Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
MAbs ; 13(1): 1999194, 2021.
Article in English | MEDLINE | ID: mdl-34806527

ABSTRACT

The architectural complexity and heterogeneity of the tumor microenvironment (TME) remains a substantial obstacle in the successful treatment of cancer. Hypoxia, caused by insufficient oxygen supply, and acidosis, resulting from the expulsion of acidic metabolites, are prominent features of the TME. To mitigate the consequences of the hostile TME, cancer cells metabolically rewire themselves and express a series of specific transporters and enzymes instrumental to this adaptation. One of these proteins is carbonic anhydrase (CA)IX, a zinc-containing extracellular membrane bound enzyme that has been shown to play a critical role in the maintenance of a neutral intracellular pH (pHi), allowing tumor cells to survive and thrive in these harsh conditions. Although CAIX has been considered a promising cancer target, only two antibody-based therapeutics have been clinically tested so far. To fill this gap, we generated a series of novel monoclonal antibodies (mAbs) that specifically recognize the extracellular domain (ECD) of human CAIX. Here we describe the biophysical and functional properties of a set of antibodies against the CAIX ECD domain and their applicability as: 1) suitable for development as an antibody-drug-conjugate, 2) an inhibitor of CAIX enzyme activity, or 3) an imaging/detection antibody. The results presented here demonstrate the potential of these specific hCAIX mAbs for further development as novel cancer therapeutic and/or diagnostic tools.


Subject(s)
Antineoplastic Agents, Immunological , Carbonic Anhydrases , Antibodies, Monoclonal/pharmacology , Antigens, Neoplasm , Biomarkers, Tumor , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration
2.
Curr Res Immunol ; 1: 23-37, 2020 Dec.
Article in English | MEDLINE | ID: mdl-35493857

ABSTRACT

The effector functions of the IgGs are modulated by the N-glycosylation of their Fc region. Particularly, the absence of core fucosylation is known to increase the affinity of IgG1s for the Fcγ receptor IIIa expressed by immune cells, in turn translating in an improvement in the antibody-dependent cellular cytotoxicity. However, the impact of galactosylation and sialylation is still debated in the literature. In this study, we have investigated the influence of high and low levels of core fucosylation, terminal galactosylation and terminal α2,6-sialylation of the Fc N-glycans of trastuzumab on its affinity for the FcγRIIIa. A large panel of antibody glycoforms (i.e., highly α2,6-sialylated or galactosylated IgG1s, with high or low levels of core fucosylation) were generated and characterized, while their interactions with the FcγRs were analysed by a robust surface plasmon resonance-based assay as well as in a cell-based reporter bioassay. Overall, IgG1 glycoforms with reduced fucosylation display a stronger affinity for the FcγRIIIa. In addition, fucosylation, and the presence of terminal galactose and sialic acids are shown to increase the affinity for the FcγRIIIa as compared to the agalactosylated forms. These observations perfectly translate in the response observed in our reporter bioassay.

3.
Mol Cancer Ther ; 11(7): 1477-87, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22562986

ABSTRACT

Deregulation of TGF-ß superfamily signaling is a causative factor in many diseases. Here we describe a protein engineering strategy for the generation of single-chain bivalent receptor traps for TGF-ß superfamily ligands. Traps were assembled using the intrinsically disordered regions flanking the structured binding domain of each receptor as "native linkers" between two binding domains. This yields traps that are approximately threefold smaller than antibodies and consists entirely of native receptor sequences. Two TGF-ß type II receptor-based, single-chain traps were designed, termed (TßRII)2 and (TßRIIb)2, that have native linker lengths of 35 and 60 amino acids, respectively. Both single-chain traps exhibit a 100 to 1,000 fold higher in vitro ligand binding and neutralization activity compared with the monovalent ectodomain (TßRII-ED), and a similar or slightly better potency than pan-TGF-ß-neutralizing antibody 1D11 or an Fc-fused receptor trap (TßRII-Fc). Despite its short in vivo half-life (<1 hour), which is primarily due to kidney clearance, daily injections of the (TßRII)2 trap reduced the growth of 4T1 tumors in BALB/c mice by 50%, an efficacy that is comparable with 1D11 (dosed thrice weekly). In addition, (TßRII)2 treatment of mice with established 4T1 tumors (100 mm(3)) significantly inhibited further tumor growth, whereas the 1D11 antibody did not. Overall, our results indicate that our rationally designed bivalent, single-chain traps have promising therapeutic potential.


Subject(s)
Protein Engineering , Receptors, Transforming Growth Factor beta/chemistry , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Order , Humans , Immunosuppression Therapy , Ligands , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Protein Binding , Protein Conformation , Protein Stability , Rats , Rats, Sprague-Dawley , Receptors, Transforming Growth Factor beta/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Transforming Growth Factor beta/metabolism
4.
Int J Cancer ; 131(5): E681-92, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22119929

ABSTRACT

Several reports have shown that secreted clusterin (sCLU) plays multiple roles in tumor development and metastasis. Here, we report on a 12-mer sCLU binding peptide (designated P3378) that was identified by screening a phage-display peptide library against purified human sCLU. Differential resonance perturbation nuclear magnetic resonance using P3378 and a scrambled control peptide (designated P3378R) confirmed the P3378-sCLU interaction and demonstrated that it was sequence specific. P3378 and P3378R peptides were conjugated to an Alexa680 near infrared fluorophore (NIRF) and assessed for their tumor homing abilities in in vivo time-domain fluorescence optical imaging experiments using living 4T1 tumor bearing BALB/c mice. When injected in separate animals, both peptides accumulated at the tumor site, however the NIRF-labeled P3378 peptide was retained for a significant longer period of time than the P3378R peptide. Similar observations were made after simultaneously injecting the same tumor-bearing animal with a peptide mixture of P3378 DyLight (DL)680 and the P3378R-DL800. Coinjection of P3378-DL680 with excess unlabeled P3378 blocked tumor accumulation of fluorescent signal while excess P3378R control peptide did not confirming the sequence specificity of the tumor accumulation. Finally, ex vivo fluorescence microscopy of these tumors confirmed the presence of P3378-DL680 in the tumor and its colocalization with CLU. These results confirm the tumor targeting specificity of the P3378 CLU-binding peptide and suggest its usefulness for the in vivo monitoring of solid tumors secreting detectable levels of CLU.


Subject(s)
Clusterin/metabolism , Mammary Neoplasms, Animal/diagnosis , Mammary Neoplasms, Animal/metabolism , Microscopy, Fluorescence , Molecular Imaging , Peptide Fragments/metabolism , Spectroscopy, Near-Infrared , Animals , Blotting, Western , Female , Fluorescent Antibody Technique , Fluorescent Dyes , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Probes , Peptide Library , Tumor Cells, Cultured
5.
J Bioinform Comput Biol ; 8(1): 19-38, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20183872

ABSTRACT

An unsupervised multi-strategy approach has been developed to identify informative genes from high throughput genomic data. Several statistical methods have been used in the field to identify differentially expressed genes. Since different methods generate different lists of genes, it is very challenging to determine the most reliable gene list and the appropriate method. This paper presents a multi-strategy method, in which a combination of several data analysis techniques are applied to a given dataset and a confidence measure is established to select genes from the gene lists generated by these techniques to form the core of our final selection. The remainder of the genes that form the peripheral region are subject to exclusion or inclusion into the final selection. This paper demonstrates this methodology through its application to an in-house cancer genomics dataset and a public dataset. The results indicate that our method provides more reliable list of genes, which are validated using biological knowledge, biological experiments, and literature search. We further evaluated our multi-strategy method by consolidating two pairs of independent datasets, each pair is for the same disease, but generated by different labs using different platforms. The results showed that our method has produced far better results.


Subject(s)
Gene Expression Profiling/statistics & numerical data , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Animals , Artificial Intelligence , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Computational Biology , Databases, Genetic , Decision Trees , Genomics/statistics & numerical data , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Transforming Growth Factor beta/pharmacology
6.
Proteome Sci ; 7: 15, 2009 Apr 06.
Article in English | MEDLINE | ID: mdl-19348683

ABSTRACT

BACKGROUND: Many putative disease blood biomarkers discovered in genomic and proteomic studies await validation in large clinically annotated cohorts of patient samples. ELISA assays require large quantities of precious blood samples and are not high-throughput. The reverse phase protein microarray platform has been developed for the high-throughput quantification of protein levels in small amounts of clinical samples. RESULTS: In the present study we present the development of reverse-phase protein microarrays (RPPMs) for the measurement of clusterin, a mid-abundant blood biomarker. An experimental protocol was optimized for the printing of serum and plasma on RPPMs using epoxy coated microscope slides and a non-denaturing printing buffer. Using fluorescent-tagged secondary antibodies, we achieved the reproducible detection of clusterin in spotted serum and plasma and reached a limit of detection of 780 ng/mL. Validation studies using both spiked clusterin and clinical samples showed excellent correlations with ELISA measurements of clusterin. CONCLUSION: Serum and plasma spotted in the reverse phase array format allow for reliable and reproducible high-throughput validation of a mid-abundant blood biomarker such as clusterin.

7.
Proteome Sci ; 7: 2, 2009 Jan 08.
Article in English | MEDLINE | ID: mdl-19128513

ABSTRACT

BACKGROUND: TGF-beta acts as an antiproliferative factor in normal epithelial cells and at early stages of oncogenesis. However, later in tumor development TGF-beta can become tumor promoting through mechanisms including the induction of epithelial-to-mesenchymal transition (EMT), a process that is thought to contribute to tumor progression, invasion and metastasis. To identify EMT-related breast cancer therapeutic targets and biomarkers, we have used two proteomic approaches to find proteins that change in abundance upon the induction of EMT by TGF-beta in two mouse mammary epithelial cell lines, NMuMG and BRI-JM01. RESULTS: Preliminary experiments based on two-dimensional electrophoresis of a hydrophobic cell fraction identified only 5 differentially expressed proteins from BRI-JM01 cells. Since 3 of these proteins were glycoproteins, we next used the lectin, wheat germ agglutinin (WGA), to enrich for glycoproteins, followed by relative quantification of tryptic peptides using a label-free LC-MS based method. Using these approaches, we identified several proteins that are modulated during the EMT process, including cell adhesion molecules (several members of the Integrin family, Fibronectin, Activated leukocyte cell adhesion molecule, and Neural cell adhesion molecule 1) and regulators of cellular signaling (Tumor-associated calcium signal transducer 2, Basigin). CONCLUSION: Interestingly, despite the fact that TGF-beta induces similar EMT phenotypes in NMuMG and BRI-JM01 cells, the proteomic results for the two cell lines showed only minimal overlap. These differences likely result in part from the conservative cut-off values used to define differentially-expressed proteins in these experiments. Alternatively, it is possible that the two cell lines may use different mechanisms to achieve an EMT transition.

8.
Breast Cancer Res ; 6(5): R514-30, 2004.
Article in English | MEDLINE | ID: mdl-15318933

ABSTRACT

INTRODUCTION: This report describes the isolation and characterization of three new murine mammary epithelial cell lines derived from mammary tumors from MMTV (mouse mammary tumor virus)/activated Neu + TbetaRII-AS (transforming growth factor [TGF]-beta type II receptor antisense RNA) bigenic mice (BRI-JM01 and BRI-JM05 cell lines) and MMTV/activated Neu transgenic mice (BRI-JM04 cell line). METHODS: The BRI-JM01, BRI-JM04, and BRI-JM05 cell lines were analyzed for transgene expression, their general growth characteristics, and their sensitivities to several growth factors from the epidermal growth factor (EGF) and TGF-beta families (recombinant human EGF, heregulin-beta1 and TGF-beta1). The BRI-JM01 cells were observed to undergo a striking morphologic change in response to TGF-beta1, and they were therefore further investigated for their ability to undergo a TGF-beta-induced epithelial-to-mesenchymal transition (EMT) using motility assays and immunofluorescence microscopy. RESULTS: We found that two of the three cell lines (BRI-JM04 and BRI-JM05) express the Neu transgene, whereas, unexpectedly, both of the cell lines that were established from MMTV/activated Neu + TbetaRII-AS bigenic tumors (BRI-JM01 and BRI-JM05) do not express the TbetaRII-AS transgene. The cuboidal BRI-JM01 cells exhibit a short doubling time and are able to form confluent monolayers. The BRI-JM04 and BRI-JM05 cell lines are morphologically much less uniform, grow at a much slower rate, and do not form confluent monolayers. Only the BRI-JM05 cells can form colonies in soft agar. In contrast, all three cell lines form colonies in Matrigel, although the BRI-JM04 and BRI-JM05 cell lines do so more efficiently than the BRI-JM01 cell line. All three cell lines express the cell surface marker E-cadherin, confirming their epithelial character. Proliferation assays showed that the three cell lines respond differently to recombinant human EGF and heregulin-beta1, and that all are growth inhibited by TGF-beta1, but that only the BRI-JM01 cell line undergoes an EMT and exhibits increased motility upon TGF-beta1 treatment. CONCLUSION: We suggest that the BRI-JM04 and BRI-JM05 cell lines can be used to investigate Neu oncogene driven mammary tumorigenesis, whereas the BRI-JM01 cell line will be useful for studying TGF-beta1-induced EMT.


Subject(s)
Animals, Genetically Modified , Cell Line, Tumor , Mammary Neoplasms, Animal , Receptor, ErbB-2/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation , Epithelial Cells , Mammary Neoplasms, Animal/genetics , Membrane Proteins , Mesoderm , Mice/genetics , Protein Serine-Threonine Kinases/genetics , Receptor, ErbB-2/genetics , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/genetics , Receptors, Virus , Signal Transduction , Transforming Growth Factor beta/genetics , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...