Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
2.
Eur J Endocrinol ; 189(3): 422-428, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37703313

ABSTRACT

BACKGROUND: Several rare loss-of-function mutations of delta-like noncanonical notch ligand 1 (DLK1) have been described in non-syndromic children with familial central precocious puberty (CPP). OBJECTIVE: We investigated genetic abnormalities of DLK1 gene in a French cohort of children with idiopathic CPP. Additionally, we explored the pattern of DLK1 serum levels in patients with CPP and in healthy children at puberty, as well as in wild-type female mice. PATIENTS AND METHODS: Genomic DNA was obtained from 121 French index cases with CPP. Automated sequencing of the coding region of the DLK1 gene was performed in all cases. Serum DLK1 levels were measured by enzyme linked immunosorbent assay (ELISA) in 209 individuals, including 191 with normal pubertal development and in female mice during postnatal pubertal maturation. RESULTS: We identified 2 rare pathogenic DLK1 allelic variants: A stop gain variant (c.372C>A; p.Cys124X) and a start loss variant (c.2T>G; p.Met1?, or p.0) in 2 French girls with CPP. Mean serum DLK1 levels were similar between healthy children and idiopathic CPP children. In healthy individuals, DLK1 levels correlated with pubertal stage: In girls, DLK1 decreased between Tanner stages III and V, whereas in boys, DLK1 decreased between Tanner stages II and V (P = .008 and .016, respectively). Serum levels of Dlk1 also decreased in wild-type female mice. CONCLUSIONS: Novel loss-of-function mutations in DLK1 gene were identified in 2 French girls with CPP. Additionally, we demonstrated a pattern of dynamic changes in circulating DLK1 serum levels in humans and mice during pubertal stages, reinforcing the role of this factor in pubertal timing.


Subject(s)
Puberty, Precocious , Animals , Child , Female , Humans , Male , Mice , Alleles , Calcium-Binding Proteins/genetics , Enzyme-Linked Immunosorbent Assay , Membrane Proteins/genetics , Mutation , Puberty, Precocious/genetics
3.
Lancet Diabetes Endocrinol ; 11(8): 545-554, 2023 08.
Article in English | MEDLINE | ID: mdl-37385287

ABSTRACT

BACKGROUND: Identification of genetic causes of central precocious puberty have revealed epigenetic mechanisms as regulators of human pubertal timing. MECP2, an X-linked gene, encodes a chromatin-associated protein with a role in gene transcription. MECP2 loss-of-function mutations usually cause Rett syndrome, a severe neurodevelopmental disorder. Early pubertal development has been shown in several patients with Rett syndrome. The aim of this study was to explore whether MECP2 variants are associated with an idiopathic central precocious puberty phenotype. METHODS: In this translational cohort study, participants were recruited from seven tertiary centres from five countries (Brazil, Spain, France, the USA, and the UK). Patients with idiopathic central precocious puberty were investigated for rare potentially damaging variants in the MECP2 gene, to assess whether MECP2 might contribute to the cause of central precocious puberty. Inclusion criteria were the development of progressive pubertal signs (Tanner stage 2) before the age of 8 years in girls and 9 years in boys and basal or GnRH-stimulated LH pubertal concentrations. Exclusion criteria were the diagnosis of peripheral precocious puberty and the presence of any recognised cause of central precocious puberty (CNS lesions, known monogenic causes, genetic syndromes, or early exposure to sex steroids). All patients included were followed up at the outpatient clinics of participating academic centres. We used high-throughput sequencing in 133 patients and Sanger sequencing of MECP2 in an additional 271 patients. Hypothalamic expression of Mecp2 and colocalisation with GnRH neurons were determined in mice to show expression of Mecp2 in key nuclei related to pubertal timing regulation. FINDINGS: Between Jun 15, 2020, and Jun 15, 2022, 404 patients with idiopathic central precocious puberty (383 [95%] girls and 21 [5%] boys; 261 [65%] sporadic cases and 143 [35%] familial cases from 134 unrelated families) were enrolled and assessed. We identified three rare heterozygous likely damaging coding variants in MECP2 in five girls: a de novo missense variant (Arg97Cys) in two monozygotic twin sisters with central precocious puberty and microcephaly; a de novo missense variant (Ser176Arg) in one girl with sporadic central precocious puberty, obesity, and autism; and an insertion (Ala6_Ala8dup) in two unrelated girls with sporadic central precocious puberty. Additionally, we identified one rare heterozygous 3'UTR MECP2 insertion (36_37insT) in two unrelated girls with sporadic central precocious puberty. None of them manifested Rett syndrome. Mecp2 protein colocalised with GnRH expression in hypothalamic nuclei responsible for GnRH regulation in mice. INTERPRETATION: We identified rare MECP2 variants in girls with central precocious puberty, with or without mild neurodevelopmental abnormalities. MECP2 might have a role in the hypothalamic control of human pubertal timing, adding to the evidence of involvement of epigenetic and genetic mechanisms in this crucial biological process. FUNDING: Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Wellcome Trust.


Subject(s)
Puberty, Precocious , Rett Syndrome , Animals , Child , Female , Humans , Male , Mice , Brazil , Cohort Studies , Follicle Stimulating Hormone , Gonadotropin-Releasing Hormone , Luteinizing Hormone/metabolism , Puberty, Precocious/genetics , Puberty, Precocious/diagnosis , Rett Syndrome/genetics , Rett Syndrome/complications
4.
J Clin Endocrinol Metab ; 108(7): 1758-1767, 2023 06 16.
Article in English | MEDLINE | ID: mdl-36611250

ABSTRACT

CONTEXT: Central precocious puberty (CPP) can have a familial form in approximately one-quarter of the children. The recognition of this inherited condition increased after the identification of autosomal dominant CPP with paternal transmission caused by mutations in the MKRN3 and DLK1 genes. OBJECTIVE: We aimed to characterize the inheritance and estimate the prevalence of familial CPP in a large multiethnic cohort; to compare clinical and hormonal features, as well as treatment response to GnRH analogs (GnRHa), in children with distinct modes of transmission; and to investigate the genetic basis of familial CPP. METHODS: We retrospectively studied 586 children with a diagnosis of CPP. Patients with familial CPP (n = 276) were selected for clinical and genetic analysis. Data from previous studies were grouped, encompassing sequencing of MKRN3 and DLK1 genes in 204 patients. Large-scale parallel sequencing was performed in 48 individuals from 34 families. RESULTS: The prevalence of familial CPP was estimated at 22%, with a similar frequency of maternal and paternal transmission. Pedigree analyses of families with maternal transmission suggested an autosomal dominant inheritance. Clinical and hormonal features, as well as treatment response to GnRHa, were similar among patients with different forms of transmission of familial CPP. MKRN3 loss-of-function mutations were the most prevalent cause of familial CPP, followed by DLK1 loss-of-function mutations, affecting, respectively, 22% and 4% of the studied families; both affected exclusively families with paternal transmission. Rare variants of uncertain significance were identified in CPP families with maternal transmission. CONCLUSION: We demonstrated a similar prevalence of familial CPP with maternal and paternal transmission. MKRN3 and DLK1 loss-of-function mutations were the major causes of familial CPP with paternal transmission.


Subject(s)
Puberty, Precocious , Male , Child , Humans , Puberty, Precocious/drug therapy , Puberty, Precocious/epidemiology , Puberty, Precocious/genetics , Retrospective Studies , Mutation , Fathers , Inheritance Patterns , Ubiquitin-Protein Ligases/genetics , Puberty
5.
Endocr Rev ; 44(2): 193-221, 2023 03 04.
Article in English | MEDLINE | ID: mdl-35930274

ABSTRACT

The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.


Subject(s)
Hypothalamic Diseases , Puberty, Precocious , Humans , Puberty, Precocious/diagnosis , Puberty, Precocious/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamic Diseases/complications , Hypothalamus , Puberty , Ubiquitin-Protein Ligases/metabolism
7.
Clin Endocrinol (Oxf) ; 97(3): 284-292, 2022 09.
Article in English | MEDLINE | ID: mdl-35261046

ABSTRACT

OBJECTIVE: Silver-Russell syndrome (SRS) causes short stature. Growth hormone (GH) treatment aims to increase adult height. However, data are limited on the long-term outcomes of GH in patients with molecularly confirmed SRS. This study evaluated height, body mass index (BMI) and GH treatment in molecularly confirmed SRS. DESIGN: An observational study with retrospective data collection. PATIENTS: Individuals with molecularly confirmed SRS aged ≥13 years. MEASUREMENTS: Data were collected on height, height gain (change in height standard deviation score [SDS] from childhood to final or near-final height), BMI and gain in BMI (from childhood to adulthood) and previous GH treatment. RESULTS: Seventy-one individuals (40 female) were included. The median age was 22.0 years (range 13.2-69.7). The molecular diagnoses: H19/IGF2:IG-DMR LOM in 80.3% (57/71); upd(7)mat in 16.9% (12/71) and IGF2 mutation in 2.8% (2/71). GH treatment occurred in 77.5% (55/71). Total height gain was greater in GH-treated individuals (median 1.53 SDS vs. 0.53 SDS, p = .007), who were shorter at treatment initiation (-3.46 SDS vs. -2.91 SDS, p = .04) but reached comparable heights to GH-untreated individuals (-2.22 SDS vs. -2.74 SDS, p = .7). In GH-treated individuals, BMI SDS was lower at the most recent assessment (median -1.10 vs. 1.66, p = .002) with lower BMI gain (2.01 vs. 3.58, p = .006) despite similar early BMI SDS to GH-untreated individuals (median -2.65 vs. -2.78, p = .3). CONCLUSIONS: These results support the use of GH in SRS for increasing height SDS. GH treatment was associated with lower adult BMI which may reflect improved metabolic health even following discontinuation of therapy.


Subject(s)
Body Height , Body Mass Index , Human Growth Hormone , Silver-Russell Syndrome , Adolescent , Adult , Aged , Female , Human Growth Hormone/therapeutic use , Humans , Male , Middle Aged , Retrospective Studies , Silver-Russell Syndrome/drug therapy , Young Adult
8.
Clinics (Sao Paulo) ; 76: e3511, 2021.
Article in English | MEDLINE | ID: mdl-34852145

ABSTRACT

OBJECTIVES: To prospectively evaluate demographic, anthropometric and health-related quality of life (HRQoL) in pediatric patients with laboratory-confirmed coronavirus disease 2019 (COVID-19). METHODS: This was a longitudinal observational study of surviving pediatric post-COVID-19 patients (n=53) and pediatric subjects without laboratory-confirmed COVID-19 included as controls (n=52) was performed. RESULTS: The median duration between COVID-19 diagnosis (n=53) and follow-up was 4.4 months (0.8-10.7). Twenty-three of 53 (43%) patients reported at least one persistent symptom at the longitudinal follow-up visit and 12/53 (23%) had long COVID-19, with at least one symptom lasting for >12 weeks. The most frequently reported symptoms at the longitudinal follow-up visit were headache (19%), severe recurrent headache (9%), tiredness (9%), dyspnea (8%), and concentration difficulty (4%). At the longitudinal follow-up visit, the frequencies of anemia (11% versus 0%, p=0.030), lymphopenia (42% versus 18%, p=0.020), C-reactive protein level of >30 mg/L (35% versus 0%, p=0.0001), and D-dimer level of >1000 ng/mL (43% versus 6%, p=0.0004) significantly reduced compared with baseline values. Chest X-ray abnormalities (11% versus 2%, p=0.178) and cardiac alterations on echocardiogram (33% versus 22%, p=0.462) were similar at both visits. Comparison of characteristic data between patients with COVID-19 at the longitudinal follow-up visit and controls showed similar age (p=0.962), proportion of male sex (p=0.907), ethnicity (p=0.566), family minimum monthly wage (p=0.664), body mass index (p=0.601), and pediatric pre-existing chronic conditions (p=1.000). The Pediatric Quality of Live Inventory 4.0 scores, median physical score (69 [0-100] versus 81 [34-100], p=0.012), and school score (60 [15-100] versus 70 [15-95], p=0.028) were significantly lower in pediatric patients with COVID-19 at the longitudinal follow-up visit than in controls. CONCLUSIONS: Pediatric patients with COVID-19 showed a longitudinal impact on HRQoL parameters, particularly in physical/school domains, reinforcing the need for a prospective multidisciplinary approach for these patients. These data highlight the importance of closer monitoring of children and adolescents by the clinical team after COVID-19.


Subject(s)
COVID-19 , Adolescent , COVID-19/complications , COVID-19 Testing , Child , Humans , Latin America , Male , Prospective Studies , Quality of Life , SARS-CoV-2 , Tertiary Care Centers , Post-Acute COVID-19 Syndrome
9.
J Pediatr Endocrinol Metab ; 34(11): 1371-1377, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34298591

ABSTRACT

OBJECTIVES: Longer-acting gonadotropin-releasing hormone analogs (GnRHa) have been widely used for central precocious puberty (CPP) treatment. However, the follow-up of patients after this treatment are still scarce. Our aim was to describe anthropometric, metabolic, and reproductive follow-up of CPP patients after treatment with leuprorelin acetate 3-month depot (11.25 mg). METHODS: Twenty-two female patients with idiopathic CPP were treated with leuprorelin acetate 3-month depot (11.25 mg). Their medical records were retrospectively evaluated regarding clinical, hormonal, and imaging aspects before, during, and after GnRHa treatment until adult height (AH). RESULTS: At the diagnosis of CPP, the mean chronological age (CA) was 8.2 ± 1.13 year, and mean bone age (BA) was 10.4 ± 1.4 year. Mean height SDS at the start and the end of GnRHa treatment was 1.6 ± 0.8 and 1.3 ± 0.9, respectively. The mean duration of GnRHa treatment was 2.8 ± 0.8 year. Mean predicted adult heights (PAH) at the start and the end of GnRH treatment was 153.2 ± 8.6 and 164.4 ± 7.3 cm, respectively (p<0.05). The mean AH was 163.2 ± 6.2 cm (mean SDS: 0.1 ± 1). All patients were within their target height (TH) range. There was a decrease in the percentage of overweight and obesity from the diagnosis until AH (39-19% p>0.05). At the AH, the insulin resistance and high LDL levels were identified in 3/17 patients (17.6%) and 2/21 patients (9.5%), respectively. The mean CA of menarche was 12.2 ± 0.5 years. At the AH, PCOS was diagnosed in one patient (4.8%). CONCLUSIONS: Long-term anthropometric, metabolic, and reproductive follow-up of patients with CPP treated with longer-acting GnRHa revealed effectivity, safety, and favorable outcomes.


Subject(s)
Body Height/drug effects , Gonadotropin-Releasing Hormone/analogs & derivatives , Leuprolide/therapeutic use , Menarche/drug effects , Puberty, Precocious/drug therapy , Reproduction/drug effects , Child , Female , Humans , Leuprolide/administration & dosage , Puberty, Precocious/mortality , Retrospective Studies , Treatment Outcome
11.
Hum Reprod ; 36(2): 506-518, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33313884

ABSTRACT

STUDY QUESTION: Is there an (epi)genetic basis in patients with central precocious puberty (CPP) associated with multiple anomalies that unmasks underlying mechanisms or reveals novel genetic findings related to human pubertal control? SUMMARY ANSWER: In a group of 36 patients with CPP associated with multiple phenotypes, pathogenic or likely pathogenic (epi)genetic defects were identified in 12 (33%) patients, providing insights into the genetics of human pubertal control. WHAT IS KNOWN ALREADY: A few studies have described patients with CPP associated with multiple anomalies, but without making inferences on causalities of CPP. Genetic-molecular studies of syndromic cases may reveal disease genes or mechanisms, as the presentation of such patients likely indicates a genetic disorder. STUDY DESIGN, SIZE, DURATION: This translational study was based on a genetic-molecular analysis, including genome-wide high throughput methodologies, for searching structural or sequence variants implicated in CPP and DNA methylation analysis of candidate regions. PARTICIPANTS/MATERIALS, SETTING, METHODS: A cohort of 197 patients (188 girls) with CPP without structural brain lesions was submitted to a detailed clinical evaluation, allowing the selection of 36 unrelated patients (32 girls) with CPP associated with multiple anomalies. Pathogenic allelic variants of genes known to cause monogenic CPP (KISS1R, KISS1, MKRN3 and DLK1) had been excluded in the entire cohort (197 patients). All selected patients with CPP associated with multiple anomalies (n = 36) underwent methylation analysis of candidate regions and chromosomal microarray analysis. A subset (n = 9) underwent whole-exome sequencing, due to presenting familial CPP and/or severe congenital malformations and neurocognitive abnormalities. MAIN RESULTS AND THE ROLE OF CHANCE: Among the 36 selected patients with CPP, the more prevalent associated anomalies were metabolic, growth and neurocognitive conditions. In 12 (33%) of them, rare genetic abnormalities were identified: six patients presented genetic defects in loci known to be involved with CPP (14q32.2 and 7q11.23), whereas the other six presented defects in candidate genes or regions. In detail, three patients presented hypomethylation of DLK1/MEG3:IG-DMR (14q32.2 disruption or Temple syndrome), resulting from epimutation (n = 1) or maternal uniparental disomy of chromosome 14 (n = 2). Seven patients presented pathogenic copy number variants: three with de novo 7q11.23 deletions (Williams-Beuren syndrome), three with inherited Xp22.33 deletions, and one with de novo 1p31.3 duplication. Exome sequencing revealed potential pathogenic variants in two patients: a sporadic female case with frameshift variants in TNRC6B and AREL1 and a familial male case with a missense substitution in UGT2B4 and a frameshift deletion in MKKS. LIMITATIONS, REASONS FOR CAUTION: The selection of patients was based on a retrospective clinical characterization, lacking a longitudinal inclusion of consecutive patients. In addition, future studies are needed, showing the long-term (mainly reproductive) outcomes in the included patients, as most of them are not in adult life yet. WIDER IMPLICATIONS OF THE FINDINGS: The results highlighted the relevance of an integrative clinical-genetic approach in the elucidation of mechanisms and factors involved in pubertal control. Chromosome 14q32.2 disruption indicated the loss of imprinting of DLK1 as a probable mechanism of CPP. Two other chromosomal regions (7q11.23 and Xp22.33) represented new candidate loci potentially involved in this disorder of pubertal timing. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grant number 2018/03198-0 (to A.P.M.C.) and grant number 2013/08028-1 (to A.C.V.K) from the São Paulo Research Foundation (FAPESP), and grant number 403525/2016-0 (to A.C.L.) and grant number 302849/2015-7 (to A.C.L.) and grant number 141625/2016-3 (to A.C.V.K) from the National Council for Scientific and Technological Development (CNPq). The authors have nothing to disclose. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Puberty, Precocious , Adult , Brazil , Female , Genetic Testing , Humans , Male , Puberty , Puberty, Precocious/genetics , RNA-Binding Proteins , Retrospective Studies , Ubiquitin-Protein Ligases
12.
J Clin Endocrinol Metab ; 106(4): 1041-1050, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33383582

ABSTRACT

CONTEXT: Loss-of-function mutations of makorin RING finger protein 3 (MKRN3) are the most common monogenic cause of familial central precocious puberty (CPP). OBJECTIVE: To describe the clinical and hormonal features of a large cohort of patients with CPP due to MKRN3 mutations and compare the characteristics of different types of genetic defects. METHODS: Multiethnic cohort of 716 patients with familial or idiopathic CPP screened for MKRN3 mutations using Sanger sequencing. A group of 156 Brazilian girls with idiopathic CPP (ICPP) was used as control group. RESULTS: Seventy-one patients (45 girls and 26 boys from 36 families) had 18 different loss-of-function MKRN3 mutations. Eight mutations were classified as severe (70% of patients). Among the 71 patients, first pubertal signs occurred at 6.2 ±â€…1.2 years in girls and 7.1 ±â€…1.5 years in boys. Girls with MKRN3 mutations had a shorter delay between puberty onset and first evaluation and higher follicle-stimulating hormone levels than ICPP. Patients with severe MKRN3 mutations had a greater bone age advancement than patients with missense mutations (2.3 ±â€…1.6 vs 1.6 ±â€…1.4 years, P = .048), and had higher basal luteinizing hormone levels (2.2 ±â€…1.8 vs 1.1 ±â€…1.1 UI/L, P = .018) at the time of presentation. Computational protein modeling revealed that 60% of the missense mutations were predicted to cause protein destabilization. CONCLUSION: Inherited premature activation of the reproductive axis caused by loss-of-function mutations of MKRN3 is clinically indistinct from ICPP. However, the type of genetic defect may affect bone age maturation and gonadotropin levels.


Subject(s)
Puberty, Precocious/genetics , Ubiquitin-Protein Ligases/genetics , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Family , Female , Genetic Association Studies , Humans , Hypothalamic Diseases/epidemiology , Hypothalamic Diseases/genetics , Loss of Function Mutation , Male , Mutation, Missense , Puberty, Precocious/epidemiology
13.
Fink, Thais T.; Marques, Heloisa H.S.; Gualano, Bruno; Lindoso, Livia; Bain, Vera; Astley, Camilla; Martins, Fernanda; Matheus, Denise; Matsuo, Olivia M.; Suguita, Priscila; Trindade, Vitor; Paula, Camila S.Y.; Farhat, Sylvia C.L.; Palmeira, Patricia; Leal, Gabriela N.; Suzuki, Lisa; Odone Filho, Vicente; Carneiro-Sampaio, Magda; Duarte, Alberto José S.; Antonangelo, Leila; Batisttella, Linamara R.; Polanczyk, Guilherme V.; Pereira, Rosa Maria R.; Carvalho, Carlos Roberto R.; Buchpiguel, Carlos A.; Xavier, Ana Claudia L.; Seelaender, Marilia; Silva, Clovis Artur; Pereira, Maria Fernanda B.; Sallum, Adriana M. E.; Brentani, Alexandra V. M.; Neto, Álvaro José S.; Ihara, Amanda; Santos, Andrea R.; Canton, Ana Pinheiro M.; Watanabe, Andreia; Santos, Angélica C. dos; Pastorino, Antonio C.; Franco, Bernadette D. G. M.; Caruzo, Bruna; Ceneviva, Carina; Martins, Carolina C. M. F.; Prado, Danilo; Abellan, Deipara M.; Benatti, Fabiana B.; Smaria, Fabiana; Gonçalves, Fernanda T.; Penteado, Fernando D.; Castro, Gabriela S. F. de; Gonçalves, Guilherme S.; Roschel, Hamilton; Disi, Ilana R.; Marques, Isabela G.; Castro, Inar A.; Buscatti, Izabel M.; Faiad, Jaline Z.; Fiamoncini, Jarlei; Rodrigues, Joaquim C.; Carneiro, Jorge D. A.; Paz, Jose A.; Ferreira, Juliana C.; Ferreira, Juliana C. O.; Silva, Katia R.; Bastos, Karina L. M.; Kozu, Katia; Cristofani, Lilian M.; Souza, Lucas V. B.; Campos, Lucia M. A.; Silva Filho, Luiz Vicente R. F.; Sapienza, Marcelo T.; Lima, Marcos S.; Garanito, Marlene P.; Santos, Márcia F. A.; Dorna, Mayra B.; Aikawa, Nadia E.; Litvinov, Nadia; Sakita, Neusa K.; Gaiolla, Paula V. V.; Pasqualucci, Paula; Toma, Ricardo K.; Correa-Silva, Simone; Sieczkowska, Sofia M.; Imamura, Marta; Forsait, Silvana; Santos, Vera A.; Zheng, Yingying; HC-FMUSP Pediatric Post-COVID-19 Study Group.
Clinics ; 76: e3511, 2021. tab
Article in English | LILACS | ID: biblio-1350613

ABSTRACT

OBJECTIVES: To prospectively evaluate demographic, anthropometric and health-related quality of life (HRQoL) in pediatric patients with laboratory-confirmed coronavirus disease 2019 (COVID-19) METHODS: This was a longitudinal observational study of surviving pediatric post-COVID-19 patients (n=53) and pediatric subjects without laboratory-confirmed COVID-19 included as controls (n=52) was performed. RESULTS: The median duration between COVID-19 diagnosis (n=53) and follow-up was 4.4 months (0.8-10.7). Twenty-three of 53 (43%) patients reported at least one persistent symptom at the longitudinal follow-up visit and 12/53 (23%) had long COVID-19, with at least one symptom lasting for >12 weeks. The most frequently reported symptoms at the longitudinal follow-up visit were headache (19%), severe recurrent headache (9%), tiredness (9%), dyspnea (8%), and concentration difficulty (4%). At the longitudinal follow-up visit, the frequencies of anemia (11% versus 0%, p=0.030), lymphopenia (42% versus 18%, p=0.020), C-reactive protein level of >30 mg/L (35% versus 0%, p=0.0001), and D-dimer level of >1000 ng/mL (43% versus 6%, p=0.0004) significantly reduced compared with baseline values. Chest X-ray abnormalities (11% versus 2%, p=0.178) and cardiac alterations on echocardiogram (33% versus 22%, p=0.462) were similar at both visits. Comparison of characteristic data between patients with COVID-19 at the longitudinal follow-up visit and controls showed similar age (p=0.962), proportion of male sex (p=0.907), ethnicity (p=0.566), family minimum monthly wage (p=0.664), body mass index (p=0.601), and pediatric pre-existing chronic conditions (p=1.000). The Pediatric Quality of Live Inventory 4.0 scores, median physical score (69 [0-100] versus 81 [34-100], p=0.012), and school score (60 [15-100] versus 70 [15-95], p=0.028) were significantly lower in pediatric patients with COVID-19 at the longitudinal follow-up visit than in controls. CONCLUSIONS: Pediatric patients with COVID-19 showed a longitudinal impact on HRQoL parameters, particularly in physical/school domains, reinforcing the need for a prospective multidisciplinary approach for these patients. These data highlight the importance of closer monitoring of children and adolescents by the clinical team after COVID-19.


Subject(s)
Humans , Male , Child , Adolescent , COVID-19/complications , Quality of Life , Prospective Studies , Tertiary Care Centers , COVID-19 Testing , SARS-CoV-2 , Latin America
14.
J Clin Endocrinol Metab ; 105(10)2020 10 01.
Article in English | MEDLINE | ID: mdl-32676665

ABSTRACT

BACKGROUND: Central precocious puberty (CPP) has been associated with loss-of-function mutations in 2 paternally expressed genes (MKRN3 and DLK1). Rare defects in the DLk1 were also associated with poor metabolic phenotype at adulthood. OBJECTIVE: Our aim was to investigate genetic and biochemical aspects of DLK1 in a Spanish cohort of children with CPP without MKRN3 mutations. PATIENTS: A large cohort of children with idiopathic CPP (Spanish PUBERE Registry) was studied. Genomic deoxyribonucleic acid was obtained from 444 individuals (168 index cases) with CPP and their close relatives. Automatic sequencing of MKRN3 and DLK1 genes were performed. RESULTS: Five rare heterozygous mutations of MKRN3 were initially excluded in girls with familial CPP. A rare allelic deletion (c.401_404 + 8del) in the splice site junction of DLK1 was identified in a Spanish girl with sporadic CPP. Pubertal signs started at 5.7 years. Her metabolic profile was normal. Familial segregation analysis showed that the DLK1 deletion was de novo in the affected child. Serum DLK1 levels were undetectable (<0.4 ng/mL), indicating that the deletion led to complete lack of DLK1 production. Three others rare allelic variants of DLK1 were also identified (p.Asn134=; g.-222 C>A and g.-223 G>A) in 2 girls with CPP. However, both had normal DLK1 serum levels. CONCLUSION: Loss-of-function mutations of DLK1 represent a rare cause of CPP, reinforcing a significant role of this factor in human pubertal timing.


Subject(s)
Calcium-Binding Proteins/genetics , Membrane Proteins/genetics , Puberty, Precocious/genetics , Brazil , Calcium-Binding Proteins/blood , Child , DNA Mutational Analysis , Female , Humans , Loss of Function Mutation , Male , Membrane Proteins/blood , Puberty, Precocious/blood , Puberty, Precocious/diagnosis , Puberty, Precocious/metabolism , RNA Splice Sites/genetics , Ubiquitin-Protein Ligases/genetics
15.
Orphanet J Rare Dis ; 15(1): 81, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32241282

ABSTRACT

BACKGROUND: Lipodystrophy syndromes are a group of disorders characterized by a loss of adipose tissue once other situations of nutritional deprivation or exacerbated catabolism have been ruled out. With the exception of the HIV-associated lipodystrophy, they have a very low prevalence, which together with their large phenotypic heterogeneity makes their identification difficult, even for endocrinologists and pediatricians. This leads to significant delays in diagnosis or even to misdiagnosis. Our group has developed an algorithm that identifies the more than 40 rare lipodystrophy subtypes described to date. This algorithm has been implemented in a free mobile application, LipoDDx®. Our aim was to establish the effectiveness of LipoDDx®. Forty clinical records of patients with a diagnosis of certainty of most lipodystrophy subtypes were analyzed, including subjects without lipodystrophy. The medical records, blinded for diagnosis, were evaluated by 13 physicians, 1 biochemist and 1 dentist. Each evaluator first gave his/her results based on his/her own criteria. Then, a second diagnosis was given using LipoDDx®. The results were analysed based on a score table according to the complexity of each case and the prevalence of the disease. RESULTS: LipoDDx® provides a user-friendly environment, based on usually dichotomous questions or choice of clinical signs from drop-down menus. The final result provided by this app for a particular case can be a low/high probability of suffering a particular lipodystrophy subtype. Without using LipoDDx® the success rate was 17 ± 20%, while with LipoDDx® the success rate was 79 ± 20% (p < 0.01). CONCLUSIONS: LipoDDx® is a free app that enables the identification of subtypes of rare lipodystrophies, which in this small cohort has around 80% effectiveness, which will be of help to doctors who are not experts in this field. However, it will be necessary to analyze more cases in order to obtain a more accurate efficiency value.


Subject(s)
Lipodystrophy , Mobile Applications , Adipose Tissue , Female , Humans , Lipodystrophy/diagnosis , Male , Syndrome
16.
J Med Genet ; 57(10): 717-724, 2020 10.
Article in English | MEDLINE | ID: mdl-32152250

ABSTRACT

BACKGROUND: Rare variants in hundreds of genes have been implicated in developmental delay (DD), intellectual disability (ID) and neurobehavioural phenotypes. TNRC6B encodes a protein important for RNA silencing. Heterozygous truncating variants have been reported in three patients from large cohorts with autism, but no full phenotypic characterisation was described. METHODS: Clinical and molecular characterisation was performed on 17 patients with TNRC6B variants. Clinical data were obtained by retrospective chart review, parent interviews, direct patient interaction with providers and formal neuropsychological evaluation. RESULTS: Clinical findings included DD/ID (17/17) (speech delay in 94% (16/17), fine motor delay in 82% (14/17) and gross motor delay in 71% (12/17) of subjects), autism or autistic traits (13/17), attention deficit and hyperactivity disorder (ADHD) (11/17), other behavioural problems (7/17) and musculoskeletal findings (12/17). Other congenital malformations or clinical findings were occasionally documented. The majority of patients exhibited some dysmorphic features but no recognisable gestalt was identified. 17 heterozygous TNRC6B variants were identified in 12 male and five female unrelated subjects by exome sequencing (14), a targeted panel (2) and a chromosomal microarray (1). The variants were nonsense (7), frameshift (5), splice site (2), intragenic deletions (2) and missense (1). CONCLUSIONS: Variants in TNRC6B cause a novel genetic disorder characterised by recurrent neurocognitive and behavioural phenotypes featuring DD/ID, autism, ADHD and other behavioural abnormalities. Our data highly suggest that haploinsufficiency is the most likely pathogenic mechanism. TNRC6B should be added to the growing list of genes of the RNA-induced silencing complex associated with ID/DD, autism and ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Autistic Disorder/genetics , Genetic Predisposition to Disease , RNA-Binding Proteins/genetics , Attention Deficit Disorder with Hyperactivity/complications , Attention Deficit Disorder with Hyperactivity/pathology , Autistic Disorder/complications , Autistic Disorder/pathology , Child , Child, Preschool , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Female , Heterozygote , Humans , Intellectual Disability/complications , Intellectual Disability/genetics , Intellectual Disability/pathology , Language Development Disorders/genetics , Language Development Disorders/pathology , Male , Motor Skills Disorders/genetics , Motor Skills Disorders/pathology , Mutation/genetics , Phenotype , Exome Sequencing
17.
Neuroendocrinology ; 110(7-8): 705-713, 2020.
Article in English | MEDLINE | ID: mdl-31671431

ABSTRACT

INTRODUCTION: Loss-of-function mutation of MKRN3 represents the most frequent genetic cause of familial central precocious puberty (CPP). The outcomes of gonadotropin-releasing hormone analog (GnRHa) treatment in CPP patients with MKRN3 defects are unknown. OBJECTIVE: To describe the clinical and hormonal features of patients with CPP with or without MKRN3 mutations after GnRHa treatment. Anthropometric, metabolic and reproductive parameters were evaluated. PATIENTS AND METHODS: Twenty-nine female patients with CPP due to loss-of-function mutations in the MKRN3 and 43 female patients with idiopathic CPP were included. Their medical records were retrospectively evaluated for clinical, laboratory, and imaging study, before, during, and after GnRHa treatment. All patients with idiopathic CPP and 11 patients with CPP due to MKRN3 defects reached final height (FH). RESULTS: At the diagnosis, there were no significant differences between clinical and laboratory features of patients with CPP with or without MKRN3 mutations. A high prevalence of overweight and obesity was observed in patients with CPP with or without MKRN3 mutations (47.3 and 50%, respectively), followed by a significant reduction after GnRHa treatment. No significant differences in the values of mean FH and target height were found between the 2 CPP groups after GnRHa treatment. Menarche occurred at the expected age in patients with or without CPP due to MKRN3 mutations (11.5 ± 1.3 and 12 ± 0.6 years, respectively). The prevalence of polycystic ovarian syndrome was 9.1% in patients with CPP due to MKRN3 mutations and 5.9% in those with idiopathic CPP. CONCLUSION: Anthropometric, metabolic, and reproductive outcomes after GnRHa treatment were comparable in CPP patients, with or without MKRN3 mutations, suggesting the absence of deleterious effects of MKRN3 defects in young female adults' life.


Subject(s)
Fertility Agents, Female/therapeutic use , Puberty, Precocious/drug therapy , Puberty, Precocious/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Body Height/drug effects , Body Height/genetics , Case-Control Studies , Child , Child, Preschool , Female , Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/therapeutic use , Gonads/drug effects , Gonads/physiology , Humans , Loss of Function Mutation , Overweight/diagnosis , Overweight/epidemiology , Overweight/genetics , Pediatric Obesity/diagnosis , Pediatric Obesity/epidemiology , Pediatric Obesity/genetics , Prevalence , Prognosis , Puberty, Precocious/diagnosis , Puberty, Precocious/epidemiology , Retrospective Studies , Treatment Outcome
18.
Arch Endocrinol Metab ; 63(4): 438-444, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31460623

ABSTRACT

Pubertal timing in humans is determined by complex interactions including hormonal, metabolic, environmental, ethnic, and genetic factors. Central precocious puberty (CPP) is defined as the premature reactivation of the hypothalamic-pituitary-gonadal axis, starting before the ages of 8 and 9 years in girls and boys, respectively; familial CPP is defined by the occurrence of CPP in two or more family members. Pioneering studies have evidenced the participation of genetic factors in pubertal timing, mainly identifying genetic causes of CPP in sporadic and familial cases. In this context, rare activating mutations were identified in genes of the kisspeptin excitatory pathway (KISS1R and KISS1 mutations). More recently, loss-of-function mutations in two imprinted genes (MKRN3 and DLK1) have been identified as important causes of familial CPP, describing novel players in the modulation of the hypothalamic-pituitary-gonadal axis in physiological and pathological conditions. MKRN3 mutations are the most common cause of familial CPP, and patients with MKRN3 mutations present clinical features indistinguishable from idiopathic CPP. Meanwhile, adult patients with DLK1 mutations present high frequency of metabolic alterations (overweight/obesity, early onset type 2 diabetes and hyperlipidemia), indicating that DLK1 may be a novel link between reproduction and metabolism. Arch Endocrinol Metab. 2019;63(4):438-44.


Subject(s)
Puberty, Precocious/genetics , Calcium-Binding Proteins , Gene Silencing , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kisspeptins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methylation , Mutation , Phenotype , Puberty, Precocious/etiology , Receptors, Kisspeptin-1/genetics , Ribonucleoproteins/genetics , Ubiquitin-Protein Ligases
19.
Arch. endocrinol. metab. (Online) ; 63(4): 438-444, July-Aug. 2019. tab, graf
Article in English | LILACS | ID: biblio-1019366

ABSTRACT

ABSTRACT Pubertal timing in humans is determined by complex interactions including hormonal, metabolic, environmental, ethnic, and genetic factors. Central precocious puberty (CPP) is defined as the premature reactivation of the hypothalamic-pituitary-gonadal axis, starting before the ages of 8 and 9 years in girls and boys, respectively; familial CPP is defined by the occurrence of CPP in two or more family members. Pioneering studies have evidenced the participation of genetic factors in pubertal timing, mainly identifying genetic causes of CPP in sporadic and familial cases. In this context, rare activating mutations were identified in genes of the kisspeptin excitatory pathway (KISS1R and KISS1 mutations). More recently, loss-of-function mutations in two imprinted genes (MKRN3 and DLK1) have been identified as important causes of familial CPP, describing novel players in the modulation of the hypothalamic-pituitary-gonadal axis in physiological and pathological conditions. MKRN3 mutations are the most common cause of familial CPP, and patients with MKRN3 mutations present clinical features indistinguishable from idiopathic CPP. Meanwhile, adult patients with DLK1 mutations present high frequency of metabolic alterations (overweight/obesity, early onset type 2 diabetes and hyperlipidemia), indicating that DLK1 may be a novel link between reproduction and metabolism. Arch Endocrinol Metab. 2019;63(4):438-44


Subject(s)
Humans , Puberty, Precocious/genetics , Phenotype , Puberty, Precocious/etiology , Ribonucleoproteins/genetics , Calcium-Binding Proteins , Gene Silencing , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kisspeptins/genetics , Receptors, Kisspeptin-1/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methylation , Mutation
20.
J Clin Endocrinol Metab ; 104(6): 2112-2120, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30462238

ABSTRACT

BACKGROUND: Delta-like homolog 1 (DLK1), also called preadipocyte factor 1, prevents adipocyte differentiation and has been considered a molecular gatekeeper of adipogenesis. A DLK1 complex genomic defect was identified in five women from a single family with central precocious puberty (CPP) and increased body fat percentage. METHODS: We studied 60 female patients with a diagnosis of CPP or history of precocious menarche. Thirty-one of them reported a family history of precocious puberty. DLK1 DNA sequencing was performed in all patients. Serum DLK1 concentrations were measured using an ELISA assay in selected cases. Metabolic and reproductive profiles of adult women with CPP caused by DLK1 defects were compared with those of 20 women with idiopathic CPP. RESULTS: We identified three frameshift mutations of DLK1 (p.Gly199Alafs*11, p.Val271Cysfs*14, and p.Pro160Leufs*50) in five women from three families with CPP. Segregation analysis was consistent with the maternal imprinting of DLK1. Serum DLK1 concentrations were undetectable in three affected women. Metabolic abnormalities, such as overweight/obesity, early-onset glucose intolerance/type 2 diabetes mellitus, and hyperlipidemia, were more prevalent in women with the DLK1 mutation than in the idiopathic CPP group. Notably, the human metabolic alterations were similar to the previously described dlk1-null mice phenotype. Two sisters who carried the p.Gly199Alafs*11 mutation also exhibited polycystic ovary syndrome and infertility. CONCLUSIONS: Loss-of-function mutations of DLK1 are a definitive cause of familial CPP. The high prevalence of metabolic alterations in adult women who experienced CPP due to DLK1 defects suggests that this antiadipogenic factor represents a link between reproduction and metabolism.


Subject(s)
Calcium-Binding Proteins/physiology , Membrane Proteins/physiology , Metabolic Diseases/genetics , Puberty, Precocious/genetics , Adolescent , Adult , Calcium-Binding Proteins/blood , Calcium-Binding Proteins/genetics , Female , Humans , Infertility, Female/genetics , Membrane Proteins/blood , Membrane Proteins/genetics , Metabolic Diseases/etiology , Middle Aged , Mutation , Polycystic Ovary Syndrome/genetics , Puberty, Precocious/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...