Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38905063

ABSTRACT

PURPOSE: A case report of a six-year and five-month-old female admitted with typical symptoms of Rubinstein-Taybi syndrome is presented. Clinical and rehabilitation settings where she acquired her reading, writing, and communication skills are described. METHODS: Because of her cognitive disabilities, a multidisciplinary and long-term intervention (2014-2020) was necessary. Treatment included orthoptic, psychomotor, logopedic, occupational, and neuropsychological care. Her family and school were involved. RESULTS: Increased attention led to decreased dysfunctional behaviors. Test results are still below average, but there has been significant improvement. Better communication skills resulted from increased phonetic range, improved articulation, lexical-semantic structure, comprehension, and production of sentences. Digital technologies played a significant role in enhancing her communication skills, not just in social interactions but also in school activities. The patient is oriented in time and space with the help of agendas and calendars. She can express her needs and compose concise narratives. As a result of acquiring functional skills, she is better equipped to handle real-life situations, which has led to increased social and family activities. CONCLUSION: This case report highlights the importance of personalized rehabilitation programs. Obtaining an early genetic diagnosis is crucial for timely tailored rehabilitation, and any delays in this process can hinder progress.

2.
Nanomaterials (Basel) ; 12(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35630844

ABSTRACT

Controlling material thickness and element interdiffusion at the interface is crucial for many applications of core-shell nanowires. Herein, we report the thickness-controlled and conformal growth of a Sb2Te3 shell over GeTe and Ge-rich Ge-Sb-Te core nanowires synthesized via metal-organic chemical vapor deposition (MOCVD), catalyzed by the Vapor-Liquid-Solid (VLS) mechanism. The thickness of the Sb2Te3 shell could be adjusted by controlling the growth time without altering the nanowire morphology. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to examine the surface morphology and the structure of the nanowires. The study aims to investigate the interdiffusion, intactness, as well as the oxidation state of the core-shell nanowires. Angle-resolved X-ray photoelectron spectroscopy (XPS) was applied to investigate the surface chemistry of the nanowires. No elemental interdiffusion between the GeTe, Ge-rich Ge-Sb-Te cores, and Sb2Te3 shell of the nanowires was revealed. Chemical bonding between the core and the shell was observed.

3.
BMC Neurol ; 22(1): 109, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35317736

ABSTRACT

BACKGROUND: The rehabilitation of paretic stroke patients uses a wide range of intervention programs to improve the function of impaired upper limb. A new rehabilitative approach, called action observation therapy (AOT) is based on the discovery of mirror neurons and has been used to improve the motor functions of adult stroke patients and children with cerebral palsy. Recently, virtual reality (VR) has provided the potential to increase the frequency and effectiveness of rehabilitation treatment by offering challenging and motivating tasks.  METHODS: The purpose of the present project is to design a randomized controlled six-month follow-up trial (RCT) to evaluate whether action observation (AO) added to standard VR (AO + VR) is effective in improving upper limb function in patients with stroke, compared with a control treatment consisting of observation of naturalistic scenes (CO) without any action content, followed by VR training (CO + VR). DISCUSSION: AO + VR treatment may provide an addition to the rehabilitative interventions currently available for recovery after stroke and could be utilized within standard sensorimotor training or in individualized tele-rehabilitation. TRIAL REGISTRATION: The trial has been prospectively registered on ClinicalTrials.gov. NCT05163210 . 17 December 2021.


Subject(s)
Mirror Neurons , Stroke Rehabilitation , Stroke , Virtual Reality , Adult , Child , Humans , Stroke/therapy , Technology
4.
Adv Sci (Weinh) ; 8(14): 2004101, 2021 07.
Article in English | MEDLINE | ID: mdl-34306971

ABSTRACT

Malaria remains the most important mosquito-borne infectious disease worldwide, with 229 million new cases and 409.000 deaths in 2019. The infection is caused by a protozoan parasite which attacks red blood cells by feeding on hemoglobin and transforming it into hemozoin. Despite the WHO recommendation of prompt malaria diagnosis, the quality of microscopy-based diagnosis is frequently inadequate while rapid diagnostic tests based on antigens are not quantitative and still affected by non-negligible false negative/positive results. PCR-based methods are highly performant but still not widely used in endemic areas. Here, a diagnostic tool (TMek), based on the paramagnetic properties of hemozoin nanocrystals in infected red blood cells (i-RBCs), is reported on. Exploiting the competition between gravity and magnetic forces, i-RBCs in a whole blood specimen are sorted and electrically detected in a microchip. The amplitude and time evolution of the electrical signal allow for the quantification of i-RBCs (in the range 10-105 i-RBC µL-1) and the distinction of the infection stage. A preliminary validation study on 75 patients with clinical suspect of malaria shows on-field operability, without false negative and a few false positive results. These findings indicate the potential of TMek as a quantitative, stage-selective, rapid test for malaria.


Subject(s)
Lab-On-A-Chip Devices , Malaria/diagnosis , Erythrocytes/parasitology , Evaluation Studies as Topic , Humans , Reproducibility of Results , Sensitivity and Specificity
5.
Adv Mater ; 32(9): e1906439, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31944413

ABSTRACT

Integrated optically inspired wave-based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin waves represent a promising route due to their nanoscale wavelength in the gigahertz frequency range and rich phenomenology. Here, a versatile, optically inspired platform using spin waves is realized, demonstrating the wavefront engineering, focusing, and robust interference of spin waves with nanoscale wavelength. In particular, magnonic nanoantennas based on tailored spin textures are used for launching spatially shaped coherent wavefronts, diffraction-limited spin-wave beams, and generating robust multi-beam interference patterns, which spatially extend for several times the spin-wave wavelength. Furthermore, it is shown that intriguing features, such as resilience to back reflection, naturally arise from the spin-wave nonreciprocity in synthetic antiferromagnets, preserving the high quality of the interference patterns from spurious counterpropagating modes. This work represents a fundamental step toward the realization of nanoscale optically inspired devices based on spin waves.

6.
Materials (Basel) ; 13(2)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947686

ABSTRACT

Synthetic antiferromagnets (SAF) are widely used for a plethora of applications among which data storage, computing, and in the emerging field of magnonics. In this framework, controlling the magnetic properties of SAFs via localized thermal treatments represents a promising route for building novel magnonic materials. In this paper, we study via vibration sample magnetometry the temperature dependence of the magnetic properties of sputtered exchange bias SAFs grown via magnetron sputtering varying the ferromagnetic layers and spacer thickness. Interestingly, we observe a strong, reversible modulation of the exchange field, saturation field, and coupling strength upon heating up to 250 °C. These results suggest that exchange bias SAFs represent promising systems for developing novel artificial magnetic nanomaterials via localized thermal treatment.

7.
Small ; 12(7): 921-9, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26707363

ABSTRACT

Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-µm sized beads is demonstrated.


Subject(s)
Electricity , Feedback , Magnetics/methods , Computer Simulation , Dimethylpolysiloxanes/chemistry , Microscopy
8.
Adv Mater ; 28(3): 560-5, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26599640

ABSTRACT

Photoelectron spectroscopy in combination with piezoforce microscopy reveals that the helicity of Rashba bands is coupled to the nonvolatile ferroelectric polarization of GeTe(111). A novel surface Rashba band is found and fingerprints of a bulk Rashba band are identified by comparison with density functional theory calculations.

11.
Nanotechnology ; 20(38): 385501, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19713593

ABSTRACT

We present a device concept based on controlled micromagnetic configurations in a corner-shaped permalloy nanostructure terminated with two circular disks, specifically designed for the capture and detection of a small number of magnetic beads in suspension. A transverse head-to-head domain wall (TDW) placed at the corner of the structure plays the role of an attracting pole for magnetic beads. The TDW is annihilated in the terminating disks by applying an appropriate magnetic field, whose value is affected by the presence of beads chemically bound to the surface. In the case where the beads are not chemically bound to the surface, the annihilation of the TDW causes their release into the suspension. The variation of the voltage drop across the corner, due to the anisotropic magnetoresistance (AMR) while sweeping the magnetic field, is used to detect the presence of a chemically bound bead. The device response has been characterized by using both synthetic antiferromagnetic nanoparticles (disks of 70 nm diameter and 20 nm height) and magnetic nanobeads, for different thicknesses of the protective capping layer. We demonstrate the detection down to a single nanoparticle, therefore the device holds the potential for the localization and detection of small numbers of molecules immobilized on the particle's functionalized surface.


Subject(s)
Ferric Compounds/chemistry , Magnetics , Metal Nanoparticles/chemistry , Nanotechnology/methods , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...