Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786062

ABSTRACT

Pollen, the male gametophyte of seed plants, is extremely sensitive to UV light, which may prevent fertilization. As a result, strategies to improve plant resistance to solar ultraviolet (UV) radiation are required. The tardigrade damage suppressor protein (Dsup) is a putative DNA-binding protein that enables tardigrades to tolerate harsh environmental conditions, including UV radiation, and was therefore considered as a candidate for reducing the effects of UV exposure on pollen. Tobacco pollen was genetically engineered to express Dsup and then exposed to UV-B radiation to determine the effectiveness of the protein in increasing pollen resistance. To establish the preventive role of Dsup against UV-B stress, we carried out extensive investigations into pollen viability, germination rate, pollen tube length, male germ unit position, callose plug development, marker protein content, and antioxidant capacity. The results indicated that UV-B stress has a significant negative impact on both pollen grain and pollen tube growth. However, Dsup expression increased the antioxidant levels and reversed some of the UV-B-induced changes to pollen, restoring the proper distance between the tip and the last callose plug formed, as well as pollen tube length, tubulin, and HSP70 levels. Therefore, the expression of heterologous Dsup in pollen may provide the plant male gametophyte with enhanced responses to UV-B stress and protection against harmful environmental radiation.


Subject(s)
Nicotiana , Plant Proteins , Pollen , Ultraviolet Rays , Nicotiana/radiation effects , Nicotiana/genetics , Nicotiana/metabolism , Pollen/radiation effects , Pollen/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Stress, Physiological/radiation effects , Pollen Tube/metabolism , Pollen Tube/radiation effects , Pollen Tube/genetics , Plants, Genetically Modified , Antioxidants/metabolism , Germination/radiation effects , Gene Expression Regulation, Plant/radiation effects
2.
JACC Clin Electrophysiol ; 9(8 Pt 3): 1631-1648, 2023 08.
Article in English | MEDLINE | ID: mdl-37227349

ABSTRACT

BACKGROUND: In ∼50% of severe atrioventricular blocks (AVBs) occurring in adults <50 years, the underlying etiology remains unknown. Preliminary evidence from case reports suggests that autoimmunity, specifically the presence of circulating anti-Ro/SSA antibodies in the patient (acquired form), in the patient's mother (late-progressive congenital form), or in both (mixed form), could be involved in a fraction of idiopathic AVBs in adults by possibly targeting the L-type calcium channel (Cav1.2) and inhibiting the related current (ICaL). OBJECTIVES: The purpose of this study was to evaluate whether anti-Ro/SSA antibodies are causally implicated in the development of isolated AVBs in adults. METHODS: Thirty-four consecutive patients with isolated AVB of unknown origin and 17 available mothers were prospectively enrolled in a cross-sectional study. Anti-Ro/SSA antibodies were assessed by fluoroenzyme-immunoassay, immuno-Western blotting, and line-blot immunoassay. Purified immunoglobulin-G (IgG) from anti-Ro/SSA-positive and anti-Ro/SSA-negative subjects were tested on ICaL and Cav1.2 expression using tSA201 and HEK293 cells, respectively. Moreover, in 13 AVB patients, the impact of a short course of steroid therapy on AV conduction was evaluated. RESULTS: Anti-Ro/SSA antibodies, particularly anti-Ro/SSA-52kD, were found in 53% of AVB-patients and/or in their mothers, most commonly an acquired or mixed form (two-thirds of cases) without history of autoimmune diseases. Purified IgG from anti-Ro/SSA-positive but not anti-Ro/SSA-negative AVB patients acutely inhibited ICaL and chronically down-regulated Cav1.2 expression. Moreover, anti-Ro/SSA-positive sera showed high reactivity with peptides corresponding to the Cav1.2 channel pore-forming region. Finally, steroid therapy rapidly improved AV conduction in AVB-patients with circulating anti-Ro/SSA antibodies but not in those without. CONCLUSIONS: Our study points to anti-Ro/SSA antibodies as a novel, epidemiologically relevant and potentially reversible cause of isolated AVB in adults, via an autoimmune-mediated functional interference with the L-type calcium channels. These findings have significant impact on antiarrhythmic therapies by avoiding or delaying pacemaker implantation.


Subject(s)
Atrioventricular Block , Humans , Adult , Calcium Channels , Cross-Sectional Studies , HEK293 Cells , Immunoglobulin G/pharmacology , Steroids
3.
J Am Heart Assoc ; 10(21): e022095, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34713715

ABSTRACT

Background Recent data suggest that systemic inflammation can negatively affect atrioventricular conduction, regardless of acute cardiac injury. Indeed, gap-junctions containing connexin43 coupling cardiomyocytes and inflammation-related cells (macrophages) are increasingly recognized as important factors regulating the conduction in the atrioventricular node. The aim of this study was to evaluate the acute impact of systemic inflammatory activation on atrioventricular conduction, and elucidate underlying mechanisms. Methods and Results We analyzed: (1) the PR-interval in patients with inflammatory diseases of different origins during active phase and recovery, and its association with inflammatory markers; (2) the existing correlation between connexin43 expression in the cardiac tissue and peripheral blood mononuclear cells (PBMC), and the changes occurring in patients with inflammatory diseases over time; (3) the acute effects of interleukin(IL)-6 on atrioventricular conduction in an in vivo animal model, and on connexin43 expression in vitro. In patients with elevated C-reactive protein levels, atrioventricular conduction indices are increased, but promptly normalized in association with inflammatory markers reduction, particularly IL-6. In these subjects, connexin43 expression in PBMC, which is correlative of that measured in the cardiac tissue, inversely associated with IL-6 changes. Moreover, direct IL-6 administration increased atrioventricular conduction indices in vivo in a guinea pig model, and IL-6 incubation in both cardiomyocytes and macrophages in culture, significantly reduced connexin43 proteins expression. Conclusions The data evidence that systemic inflammation can acutely worsen atrioventricular conduction, and that IL-6-induced down-regulation of cardiac connexin43 is a mechanistic pathway putatively involved in the process. Though reversible, these alterations could significantly increase the risk of severe atrioventricular blocks during active inflammatory processes.


Subject(s)
Atrioventricular Block , Connexin 43 , Animals , Atrioventricular Node , Cytokines , Guinea Pigs , Humans , Inflammation , Interleukin-6 , Leukocytes, Mononuclear
SELECTION OF CITATIONS
SEARCH DETAIL
...