Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Primatol ; 85(9): e23534, 2023 09.
Article in English | MEDLINE | ID: mdl-37461356

ABSTRACT

Research in African ape sanctuaries has emerged as an important context for our understanding of comparative cognition and behavior. While much of this work has focused on experimental studies of cognition, these animals semi-free-range in forest habitats and therefore can also provide important information about the behavior of primates in socioecologically-relevant naturalistic contexts. In this "New Approaches" article, we describe a project where we implemented a synthetic program of observational data collection at Ngamba Island Chimpanzee Sanctuary in Uganda, directly modeled after long-term data collection protocols at the Kibale Chimpanzee Project in Uganda, a wild chimpanzee field site. The foundation for this project was a strong partnership between sanctuary staff, field site staff, and external researchers. We describe how we developed a data-collection protocol through discussion and collaboration among these groups, and trained sanctuary caregivers to collect novel observational data using these protocols. We use these data as a case study to examine: (1) how behavioral observations in sanctuaries can inform primate welfare and care practices, such as by understanding aggression within the group; (2) how matched observational protocols across sites can inform our understanding of primate behavior across different contexts, including sex differences in social relationships; and (3) how more robust collaborations between foreign researchers and local partners can support capacity-building in primate range countries, along with mentoring and training students more broadly.


Subject(s)
Hominidae , Pan troglodytes , Female , Male , Animals , Primates , Cognition , Uganda
2.
PLoS One ; 18(6): e0288007, 2023.
Article in English | MEDLINE | ID: mdl-37384730

ABSTRACT

Pathogen surveillance for great ape health monitoring has typically been performed on non-invasive samples, primarily feces, in wild apes and blood in sanctuary-housed apes. However, many important primate pathogens, including known zoonoses, are shed in saliva and transmitted via oral fluids. Using metagenomic methods, we identified viruses in saliva samples from 46 wild-born, sanctuary-housed chimpanzees at two African sanctuaries in Republic of Congo and Uganda. In total, we identified 20 viruses. All but one, an unclassified CRESS DNA virus, are classified in five families: Circoviridae, Herpesviridae, Papillomaviridae, Picobirnaviridae, and Retroviridae. Overall, viral prevalence ranged from 4.2% to 87.5%. Many of these viruses are ubiquitous in primates and known to replicate in the oral cavity (simian foamy viruses, Retroviridae; a cytomegalovirus and lymphocryptovirus; Herpesviridae; and alpha and gamma papillomaviruses, Papillomaviridae). None of the viruses identified have been shown to cause disease in chimpanzees or, to our knowledge, in humans. These data suggest that the risk of zoonotic viral disease from chimpanzee oral fluids in sanctuaries may be lower than commonly assumed.


Subject(s)
Pan troglodytes , Saliva , Animals , Humans , Congo , Uganda , Zoonoses/epidemiology , Retroviridae
3.
Am J Primatol ; 85(1): e23452, 2023 01.
Article in English | MEDLINE | ID: mdl-36329642

ABSTRACT

Infectious disease is a major concern for both wild and captive primate populations. Primate sanctuaries in Africa provide critical protection to thousands of wild-born, orphan primates confiscated from the bushmeat and pet trades. However, uncertainty about the infectious agents these individuals potentially harbor has important implications for their individual care and long-term conservation strategies. We used metagenomic next-generation sequencing to identify viruses in blood samples from chimpanzees (Pan troglodytes) in three sanctuaries in West, Central, and East Africa. Our goal was to evaluate whether viruses of human origin or other "atypical" or unknown viruses might infect these chimpanzees. We identified viruses from eight families: Anelloviridae, Flaviviridae, Genomoviridae, Hepadnaviridae, Parvoviridae, Picobirnaviridae, Picornaviridae, and Rhabdoviridae. The majority (15/26) of viruses identified were members of the family Anelloviridae and represent the genera Alphatorquevirus (torque teno viruses) and Betatorquevirus (torque teno mini viruses), which are common in chimpanzees and apathogenic. Of the remaining 11 viruses, 9 were typical constituents of the chimpanzee virome that have been identified in previous studies and are also thought to be apathogenic. One virus, a novel tibrovirus (Rhabdoviridae: Tibrovirus) is related to Bas-Congo virus, which was originally thought to be a human pathogen but is currently thought to be apathogenic, incidental, and vector-borne. The only virus associated with disease was rhinovirus C (Picornaviridae: Enterovirus) infecting one chimpanzee subsequent to an outbreak of respiratory illness at that sanctuary. Our results suggest that the blood-borne virome of African sanctuary chimpanzees does not differ appreciably from that of their wild counterparts, and that persistent infection with exogenous viruses may be less common than often assumed.


Subject(s)
Pan troglodytes , Virus Diseases , Animals , Africa/epidemiology , Pan troglodytes/virology , Virus Diseases/epidemiology , Virus Diseases/veterinary , Virus Diseases/virology , Animals, Zoo/virology
4.
Psychol Sci ; 33(9): 1408-1422, 2022 09.
Article in English | MEDLINE | ID: mdl-35876730

ABSTRACT

Cognitive control, or executive function, is a key feature of human cognition, allowing individuals to plan, acquire new information, or adopt new strategies when the circumstances change. Yet it is unclear which factors promote the evolution of more sophisticated executive-function abilities such as those possessed by humans. Examining cognitive control in nonhuman primates, our closest relatives, can help to identify these evolutionary processes. Here, we developed a novel battery to experimentally measure multiple aspects of cognitive control in primates: temporal discounting, motor inhibition, short-term memory, reversal learning, novelty responses, and persistence. We tested lemur species with targeted, independent variation in both ecological and social features (ruffed lemurs, Coquerel's sifakas, ring-tailed lemurs, and mongoose lemurs; N = 39) and found that ecological rather than social characteristics best predicted patterns of cognitive control across these species. This highlights the importance of integrating cognitive data with species' natural history to understand the origins of complex cognition.


Subject(s)
Lemur , Lemuridae , Animals , Cognition , Humans , Inhibition, Psychological , Lemur/psychology , Primates
5.
Dev Sci ; 25(5): e13266, 2022 09.
Article in English | MEDLINE | ID: mdl-35397187

ABSTRACT

Cognitive flexibility is a core component of executive function, a suite of cognitive capacities that enables individuals to update their behavior in dynamic environments. Human executive functions are proposed to be enhanced compared to other species, but this inference is based primarily on neuroanatomical studies. To address this, we examined the nature and origins of cognitive flexibility in chimpanzees, our closest living relatives. Across three studies, we examined different components of cognitive flexibility using reversal learning tasks where individuals first learned one contingency and then had to shift responses when contingencies flipped. In Study 1, we tested n = 82 chimpanzees ranging from juvenility to adulthood on a spatial reversal task, to characterize the development of basic shifting skills. In Study 2, we tested how n = 24 chimpanzees use spatial versus arbitrary perceptual information to shift, a proposed difference between human and nonhuman cognition. In Study 3, we tested n = 40 chimpanzees on a probabilistic reversal task. We found an extended developmental trajectory for basic shifting and shifting in response to probabilistic feedback-chimpanzees did not reach mature performance until late in ontogeny. Additionally, females were faster to shift than males were. We also found that chimpanzees were much more successful when using spatial versus perceptual cues, and highly perseverative when faced with probabilistic versus consistent outcomes. These results identify both core features of chimpanzee cognitive flexibility that are shared with humans, as well as constraints on chimpanzee cognitive flexibility that may represent evolutionary changes in human cognitive development.


Subject(s)
Cognition , Pan troglodytes , Adult , Animals , Cognition/physiology , Cues , Executive Function , Female , Humans , Male , Pan troglodytes/psychology
6.
Philos Trans R Soc Lond B Biol Sci ; 375(1811): 20190609, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32951545

ABSTRACT

Chimpanzees (Pan troglodytes) are a crucial model for understanding the evolution of human health and longevity. Cardiovascular disease is a major source of mortality during ageing in humans and therefore a key issue for comparative research. Current data indicate that compared to humans, chimpanzees have proatherogenic blood lipid profiles, an important risk factor for cardiovascular disease in humans. However, most work to date on chimpanzee lipids come from laboratory-living populations where lifestyles diverge from a wild context. Here, we examined cardiovascular profiles in chimpanzees living in African sanctuaries, who range semi-free in large forested enclosures, consume a naturalistic diet, and generally experience conditions more similar to a wild chimpanzee lifestyle. We measured blood lipids, body weight and body fat in 75 sanctuary chimpanzees and compared them to publicly available data from laboratory-living chimpanzees from the Primate Aging Database. We found that semi-free-ranging chimpanzees exhibited lower body weight and lower levels of lipids that are risk factors for human cardiovascular disease, and that some of these disparities increased with age. Our findings support the hypothesis that lifestyle can shape health indices in chimpanzees, similar to effects observed across human populations, and contribute to an emerging understanding of human cardiovascular health in an evolutionary context. This article is part of the theme issue 'Evolution of the primate ageing process'.


Subject(s)
Adipose Tissue/metabolism , Biomarkers , Body Weight , Lipids/blood , Longevity , Pan troglodytes/physiology , Animals , Animals, Wild/physiology , Animals, Zoo/physiology , Cardiovascular Diseases , Cardiovascular System/chemistry , Congo , Female , Health Status , Humans , Male , Models, Animal , Risk Factors
7.
JAMA Neurol ; 75(6): 728-737, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29630699

ABSTRACT

Importance: Increased prevalence of language-based learning disabilities (LDs) has been previously reported in patients with primary progressive aphasia (PPA). This study hypothesized that patients with focal neurodegenerative syndromes outside the language network, such as posterior cortical atrophy (PCA), would have a higher rate of nonlanguage LDs, congruent with their mainly visuospatial presentation. Objective: To investigate the prevalence and type of LD (language and/or mathematical and visuospatial) in a large cohort of patients with PCA compared with patients with logopenic variant PPA (lvPPA) and amnestic Alzheimer disease (AD). Design, Setting, and Participants: This case-control study reviewed 279 medical records from a university-based clinic and research center for patients with neurodegenerative diseases for LD history, including patients with PCA (n = 95), patients with lvPPA (n = 84), and a matched cohort with amnestic AD (n = 100). No records were excluded. The study compared cognitive and neuroimaging features of patients with PCA with and without LDs. A review of the records of patients presenting from March 1, 1999, to August 31, 2014, revealed 95 PCA cases and 84 lvPPA cases. Then 100 patients with amnestic AD from this same period were chosen for comparison, matching against the groups for age, sex, and disease severity. Data analysis was performed from September 8, 2013, to November 6, 2017. Main Outcomes and Measures: Prevalence of total LD history and prevalence of language and mathematical or visuospatial LD history across all cohorts. Results: A total of 179 atypical AD cases (95 with PCA and 84 with lvPPA) and 100 disease control cases (amnestic AD) were included in the study. The groups were not statistically different for mean (SD) age at first visit (PCA, 61.9 [7.0] years; lvPPA, 65.1 [8.7] years; amnestic AD, 64.0 [12.6] years; P = .08), mean (SD) age at first symptom (PCA, 57.5 [7.0] years; lvPPA, 61.1 [9.0] years; amnestic AD, 59.6 [13.7] years; P = .06), or sex (PCA, 66.3% female; lvPPA, 56.0% female; amnestic AD, 57.0% female; P = .30) but differed on non-right-hand preference (PCA, 18.3%; lvPPA, 20.2%; amnestic AD, 7.7%; P = .04), race/ethnicity (PCA, 88.3% white; lvPPA, 99.0% white; amnestic AD, 80.0% white; P < .001), and mean (SD) educational level (PCA, 15.7 [3.2] years; lvPPA, 16.2 [3.3] years; amnestic AD, 14.8 [3.5] years; P = .02). A total of 18 of the 95 patients with PCA (18.9%) reported a history of LD, which is greater than the 3 of 100 patients (3.0%) in the amnestic AD cohort (P < .001) and the 10.0% expected rate in the general population (P = .007). In the PCA cohort, 13 of 95 patients (13.7%) had a nonlanguage mathematical and/or visuospatial LD; this rate was greater than that in the amnestic AD (1 of 100 [1.0%]; P < .001) and lvPPA (2 of 84 [2.4%]; P = .006) cohorts and greater than the 6.0% expected general population rate of mathematical LD (P = .003). Compared with the patients with PCA without LDs, the group with LDs had greater preservation of global cognition and a more right-lateralized pattern of atrophy. Conclusions and Relevance: Nonlanguage mathematical and visuospatial LDs were associated with focal, visuospatial predominant neurodegenerative clinical syndromes. This finding supports the hypothesis that neurodevelopmental differences in specific brain networks are associated with phenotypic manifestation of later-life neurodegenerative disease.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Learning Disabilities/diagnostic imaging , Mathematics , Space Perception/physiology , Aged , Atrophy/diagnostic imaging , Atrophy/psychology , Case-Control Studies , Cohort Studies , Female , Humans , Learning Disabilities/psychology , Magnetic Resonance Imaging/methods , Male , Middle Aged , Prevalence
8.
Brain ; 140(12): 3286-3300, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29053874

ABSTRACT

Neuropathological and in vivo studies have revealed a tight relationship between tau pathology and cognitive impairment across the Alzheimer's disease spectrum. However, tau pathology is also intimately associated with neurodegeneration and amyloid pathology. The aim of the present study was therefore to assess whether grey matter atrophy and amyloid pathology contribute to the relationship between tau pathology, as measured with 18F-AV-1451-PET imaging, and cognitive deficits in Alzheimer's disease. We included 40 amyloid-positive patients meeting criteria for mild cognitive impairment due to Alzheimer's disease (n = 5) or probable Alzheimer's disease dementia (n = 35). Twelve patients additionally fulfilled the diagnostic criteria for posterior cortical atrophy and eight for logopenic variant primary progressive aphasia. All participants underwent 3 T magnetic resonance imaging, amyloid (11C-PiB) positron emission tomography and tau (18F-AV-1451) positron emission tomography, and episodic and semantic memory, language, executive and visuospatial functions assessment. Raw cognitive scores were converted to age-adjusted Z-scores (W-scores) and averaged to compute composite scores for each cognitive domain. Independent regressions were performed between 18F-AV-1451 binding and each cognitive domain, and we used the Biological Parametric Mapping toolbox to further control for local grey matter volumes, 11C-PiB uptake, or both. Partial correlations and causal mediation analyses (mediation R package) were then performed in brain regions showing an association between cognition and both 18F-AV-1451 uptake and grey matter volume. Our results showed that decreased cognitive performance in each domain was related to increased 18F-AV-1451 binding in specific brain regions conforming to established brain-behaviour relationships (i.e. episodic memory: medial temporal lobe and angular gyrus; semantic memory: left anterior temporal regions; language: left posterior superior temporal lobe and supramarginal gyrus; executive functions: bilateral frontoparietal regions; visuospatial functions: right more than left occipitotemporal regions). This pattern of regional associations remained essentially unchanged-although less spatially extended-when grey matter volume or 11C-PiB uptake maps were added as covariates. Mediation analyses revealed both direct and grey matter-mediated effects of 18F-AV-1451 uptake on cognitive performance. Together, these results show that tau pathology is related in a region-specific manner to cognitive impairment in Alzheimer's disease. These regional relationships are weakly related to amyloid burden, but are in part mediated by grey matter volumes. This suggests that tau pathology may lead to cognitive deficits through a variety of mechanisms, including, but not restricted to, grey matter loss. These results might have implications for future therapeutic trials targeting tau pathology.


Subject(s)
Alzheimer Disease/metabolism , Amyloid/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , tau Proteins/metabolism , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Aniline Compounds , Aphasia, Primary Progressive/diagnostic imaging , Aphasia, Primary Progressive/metabolism , Aphasia, Primary Progressive/psychology , Benzothiazoles , Brain/diagnostic imaging , Carbolines , Carbon Radioisotopes , Case-Control Studies , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Female , Fluorine Radioisotopes , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Positron-Emission Tomography , Regression Analysis , Thiazoles
9.
Brain ; 139(Pt 5): 1551-67, 2016 05.
Article in English | MEDLINE | ID: mdl-26962052

ABSTRACT

SEE SARAZIN ET AL DOI101093/BRAIN/AWW041 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: The advent of the positron emission tomography tracer (18)F-AV1451 provides the unique opportunity to visualize the regional distribution of tau pathology in the living human brain. In this study, we tested the hypothesis that tau pathology is closely linked to symptomatology and patterns of glucose hypometabolism in Alzheimer's disease, in contrast to the more diffuse distribution of amyloid-ß pathology. We included 20 patients meeting criteria for probable Alzheimer's disease dementia or mild cognitive impairment due to Alzheimer's disease, presenting with a variety of clinical phenotypes, and 15 amyloid-ß-negative cognitively normal individuals, who underwent (18)F-AV1451 (tau), (11)C-PiB (amyloid-ß) and (18)F-FDG (glucose metabolism) positron emission tomography, apolipoprotein E (APOE) genotyping and neuropsychological testing. Voxel-wise contrasts against controls (at P < 0.05 family-wise error corrected) showed that (18)F-AV1451 and (18)F-FDG patterns in patients with posterior cortical atrophy ('visual variant of Alzheimer's disease', n = 7) specifically targeted the clinically affected posterior brain regions, while (11)C-PiB bound diffusely throughout the neocortex. Patients with an amnestic-predominant presentation (n = 5) showed highest (18)F-AV1451 retention in medial temporal and lateral temporoparietal regions. Patients with logopenic variant primary progressive aphasia ('language variant of Alzheimer's disease', n = 5) demonstrated asymmetric left greater than right hemisphere (18)F-AV1451 uptake in three of five patients. Across 30 FreeSurfer-defined regions of interest in 16 Alzheimer's disease patients with all three positron emission tomography scans available, there was a strong negative association between (18)F-AV1451 and (18)F-FDG uptake (Pearson's r = -0.49 ± 0.07, P < 0.001) and less pronounced positive associations between (11)C-PiB and (18)F-FDG (Pearson's r = 0.16 ± 0.09, P < 0.001) and (18)F-AV1451 and (11)C-PiB (Pearson's r = 0.18 ± 0.09, P < 0.001). Voxel-wise linear regressions thresholded at P < 0.05 (uncorrected) showed that, across all patients, younger age was associated with greater (18)F-AV1451 uptake in wide regions of the neocortex, while older age was associated with increased (18)F-AV1451 in the medial temporal lobe. APOE ϵ4 carriers showed greater temporal and parietal (18)F-AV1451 uptake than non-carriers. Finally, worse performance on domain-specific neuropsychological tests was associated with greater (18)F-AV1451 uptake in key regions implicated in memory (medial temporal lobes), visuospatial function (occipital, right temporoparietal cortex) and language (left > right temporoparietal cortex). In conclusion, tau imaging-contrary to amyloid-ß imaging-shows a strong regional association with clinical and anatomical heterogeneity in Alzheimer's disease. Although preliminary, these results are consistent with and expand upon findings from post-mortem, animal and cerebrospinal fluid studies, and suggest that the pathological aggregation of tau is closely linked to patterns of neurodegeneration and clinical manifestations of Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Glucose/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Aging/metabolism , Alzheimer Disease/diagnostic imaging , Aniline Compounds , Apolipoproteins E/genetics , Benzothiazoles/metabolism , Carbolines/metabolism , Case-Control Studies , Cognitive Dysfunction/diagnostic imaging , Female , Fluorodeoxyglucose F18/metabolism , Humans , Male , Middle Aged , Neuroimaging , Neuropsychological Tests , Positron-Emission Tomography , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...