Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Eur J Neurol ; 26(9): 1143-1152, 2019 09.
Article in English | MEDLINE | ID: mdl-30920076

ABSTRACT

BACKGROUND AND PURPOSE: This study aimed to assess the predictive value of multimodal brain magnetic resonance imaging (MRI) on survival in a large cohort of patients with motor neuron disease (MND), in combination with clinical and cognitive features. METHODS: Two hundred MND patients were followed up prospectively for a median of 4.13 years. At baseline, subjects underwent neurological examination, cognitive assessment and brain MRI. Grey matter volumes of cortical and subcortical structures and diffusion tensor MRI metrics of white matter tracts were obtained. A multivariable Royston-Parmar survival model was created using clinical and cognitive variables. The increase of survival prediction accuracy provided by MRI variables was assessed. RESULTS: The multivariable clinical model included predominant upper or lower motor neuron presentations and diagnostic delay as significant prognostic predictors, reaching an area under the receiver operating characteristic curve (AUC) of a 4-year survival prediction of 0.79. The combined clinical and MRI model including selected grey matter fronto-temporal volumes and diffusion tensor MRI metrics of the corticospinal and extra-motor tracts reached an AUC of 0.89. Considering amyotrophic lateral sclerosis patients only, the clinical model including diagnostic delay and semantic fluency scores provided an AUC of 0.62, whereas the combined clinical and MRI model reached an AUC of 0.77. CONCLUSION: Our study demonstrated that brain MRI measures of motor and extra-motor structural damage, when combined with clinical and cognitive features, are useful predictors of survival in patients with MND, particularly when a diagnosis of amyotrophic lateral sclerosis is made.


Subject(s)
Diffusion Tensor Imaging , Gray Matter/diagnostic imaging , Motor Neuron Disease/diagnostic imaging , Motor Neuron Disease/mortality , Motor Neuron Disease/physiopathology , Aged , Delayed Diagnosis , Female , Follow-Up Studies , Humans , Male , Middle Aged , Models, Theoretical
2.
Mol Psychiatry ; 23(2): 459-466, 2018 02.
Article in English | MEDLINE | ID: mdl-28265121

ABSTRACT

This study assessed brain structural and functional alterations in patients with Parkinson's disease and impulsive-compulsive behaviours (PD-ICB) compared with controls and PD no-ICB cases. Eighty-five PD patients (35 PD-ICB) and 50 controls were recruited. All subjects underwent three-dimensional T1-weighted, diffusion tensor (DT), and resting state functional magnetic resonance imaging (RS fMRI). We assessed cortical thickness with surface-based morphometry, subcortical volumes using FIRST, DT MRI metrics using region of interest and tractography approaches, and RS fMRI using a model free approach. Compared with controls, both PD groups showed a pattern of brain structural alterations in the basal ganglia (more evident in PD no-ICB patients), sensorimotor and associative systems. Compared with PD no-ICB, PD-ICB cases showed left precentral and superior frontal cortical thinning, and motor and extramotor white matter tract damage. Compared with controls, all patients had an increased functional connectivity within the visual network. Additionally, PD no-ICB showed increased functional connectivity of bilateral precentral and postcentral gyri within the sensorimotor network compared with controls and PD-ICB. Severity and duration of PD-ICB modulated the functional connectivity between sensorimotor, visual and cognitive networks. Relative to PD no-ICB, PD-ICB patients were characterised by a more severe involvement of frontal, meso-limbic and motor circuits. These data suggest ICB in PD as the result of a disconnection between sensorimotor, associative and cognitive networks with increasing motor impairment, psychiatric symptoms, and ICB duration. These findings may have important implications in understanding the neural substrates underlying ICB in PD.


Subject(s)
Brain/physiopathology , Compulsive Behavior/physiopathology , Parkinson Disease/physiopathology , Adult , Aged , Basal Ganglia/pathology , Compulsive Behavior/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Image Processing, Computer-Assisted , Impulsive Behavior/physiology , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neural Pathways/physiopathology , Parkinson Disease/diagnostic imaging , White Matter/pathology
3.
AJNR Am J Neuroradiol ; 35(1): 30-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23744689

ABSTRACT

BACKGROUND AND PURPOSE: Previous studies have suggested that structural changes do occur in the brain of patients with schizophrenia compared with healthy control participants. However, findings from such studies are inconclusive, probably because of the different methodologic approaches, the clinical heterogeneity of patient samples, and also the fact that patients enrolled were treated with antipsychotic drugs. The aim of this study was to investigate brain GM volumes and intrinsic structural WM changes in first-contact, antipsychotic drug-naïve patients with schizophrenia. MATERIALS AND METHODS: A total of 43 first-contact, drug-naïve, patients with schizophrenia and 17 age-matched control participants were studied. All participants underwent T1-weighted MR imaging and DTI scans. Voxel-based morphometry and tract-based spatial statistics were used to compare GM volumes and WM DTI metrics between groups. MR imaging measures were correlated with the duration of the untreated psychosis and the clinical positive and negative symptoms. RESULTS: Compared with control participants, patients with schizophrenia showed smaller volumes of the temporal, parietal, and occipital GM, and a pattern of decreased mean diffusivity and increased fractional anisotropy in the brain stem and cerebellum bilaterally, interhemispheric and cortico-cortical connections bilaterally, and right anterior and posterior limb of the internal capsule. In patients, decreased mean diffusivity and increased fractional anisotropy in several brain regions were related to a longer duration of the untreated psychosis and the severity of positive symptoms. CONCLUSIONS: First-contact, drug-naïve, patients with schizophrenia present with volumetric and DTI changes, which correlated with their clinical features. This study increases our knowledge on the neural networks involved in the pathophysiologic mechanisms of schizophrenia.


Subject(s)
Brain/pathology , Nerve Fibers, Myelinated/pathology , Neurons/pathology , Schizophrenia/pathology , Adolescent , Adult , Antipsychotic Agents/therapeutic use , Female , Humans , Male , Middle Aged , Schizophrenia/drug therapy , Young Adult
5.
Cereb Cortex ; 22(12): 2705-14, 2012 Dec.
Article in English | MEDLINE | ID: mdl-21988828

ABSTRACT

White matter (WM) tract damage was assessed in patients with the behavioral variant frontotemporal dementia (bvFTD) and the 3 primary progressive aphasia (PPA) variants and compared with the corresponding brain atrophy patterns. Thirteen bvFTD and 20 PPA patients were studied. Tract-based spatial statistics and voxel-based morphometry were used. Patients with bvFTD showed widespread diffusion tensor magnetic resonance imaging (DT MRI) abnormalities affecting most of the WM bilaterally. In PPA patients, WM damage was more focal and varied across the 3 syndromes: left frontotemporoparietal in nonfluent, left frontotemporal in semantic, and left frontoparietal in logopenic patients. In each syndrome, DT MRI changes extended beyond the topography of gray matter loss. Left uncinate damage was the best predictor of frontotemporal lobar degeneration diagnosis versus controls. DT MRI measures of the anterior corpus callosum and left superior longitudinal fasciculus differentiated bvFTD from nonfluent cases. The best predictors of semantic PPA compared with both bvFTD and nonfluent cases were diffusivity abnormalities of the left uncinate and inferior longitudinal fasciculus. This study provides insights into the similarities and differences of WM damage in bvFTD and PPA variants. DT MRI metrics hold promise to serve as early markers of WM integrity loss that only at a later stage may be detectable by volumetric measures.


Subject(s)
Aphasia, Primary Progressive/pathology , Brain/pathology , Diffusion Tensor Imaging/methods , Frontotemporal Lobar Degeneration/pathology , Nerve Fibers, Myelinated/pathology , Aged , Atrophy , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
6.
AJNR Am J Neuroradiol ; 32(10): 1866-72, 2011.
Article in English | MEDLINE | ID: mdl-22016410

ABSTRACT

BACKGROUND AND PURPOSE: ALS is predominantly a disease of the motor system, but cognitive and behavioral symptoms also are observed. DT MR imaging is sensitive to microstructural changes occurring in WM tracts of patients with ALS. In this study, we investigated the association between cognitive functions and extramotor WM tract abnormalities in ALS patients. MATERIALS AND METHODS: DT MR imaging was obtained from 16 nondemented patients with ALS and 15 healthy controls. Patients with ALS underwent a neuropsychologic and behavioral evaluation. DT tractography was used to asses the integrity of the CST, corpus callosum, and the major long-range association tracts. The relationship between DT MR imaging metrics and cognitive functions was tested by using linear model analyses, adjusting for age and clinical disability. RESULTS: Eleven patients (69%) scored below the fifth percentile in at least 1 cognitive test, and 2 of them had a mild executive impairment. Performances at tests assessing attention and executive functions correlated with DT MR imaging metrics of the corpus callosum, CST, and long association WM tracts bilaterally, including the cingulum, inferior longitudinal, inferior fronto-occipital, and uncinate fasciculi. Verbal learning and memory test scores were associated with fornix DT MR imaging values, whereas visual-spatial abilities correlated with left uncinate fractional anisotropy. CONCLUSIONS: WM tract degeneration is associated with neuropsychologic deficits in patients with ALS. DT tractography holds promise to gain insight into the role of the brain WM network abnormalities in the development of cognitive impairment in patients with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnosis , Cognition Disorders/complications , Cognition Disorders/diagnosis , Demyelinating Diseases/complications , Demyelinating Diseases/diagnosis , Diffusion Tensor Imaging/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Nerve Fibers, Myelinated/pathology , Reproducibility of Results , Sensitivity and Specificity
7.
AJNR Am J Neuroradiol ; 32(7): 1307-14, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21680655

ABSTRACT

BACKGROUND AND PURPOSE: ALS leads to macrostructural (ie, cortical atrophy and hyperintensities along the corticospinal tract) and microstructural (ie, gray matter intrinsic damage) central nervous system abnormalities. We used a multimodal voxelwise imaging approach to assess microstructural changes independent of macrostructural volume loss in patients with ALS compared with HCs. MATERIALS AND METHODS: Twenty-three patients with ALS and 14 HCs were studied. Conventional imaging and DTI were performed. Images were processed by using SPM5 to assess measures of gray and white matter atrophy as well as microstructural damage (ie, MD and FA). DTI alterations independent of volume loss were investigated. RESULTS: When we accounted for both gray and white matter atrophy, patients with ALS showed increased MD values in several gray and white matter areas mainly located in the orbitofrontal and frontotemporal regions bilaterally, in the right genu of the corpus callosum, and in the right posterior limb of the internal capsule. When we accounted for white matter volume loss, patients with ALS showed decreased FA along the corticospinal tract bilaterally and in the left inferior frontal lobe relative to HCs. The MD of the orbitofrontal regions bilaterally was associated significantly with disease duration. CONCLUSIONS: In patients with ALS, DTI detects microstructural changes independent of brain tissue loss. The affected regions included both motor and extramotor areas. The extent of ALS-related DTI abnormalities was greater than that disclosed by the volumetric analysis.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Brain Mapping/methods , Brain/pathology , Diffusion Tensor Imaging , Neurons/pathology , Adult , Aged , Amyotrophic Lateral Sclerosis/pathology , Atrophy , Corpus Callosum/pathology , Female , Frontal Lobe/pathology , Humans , Internal Capsule/pathology , Leukoencephalopathies/pathology , Male , Middle Aged , Temporal Lobe/pathology
8.
Neurology ; 76(8): 727-33, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21339500

ABSTRACT

OBJECTIVE: Histologic studies show that the amygdala is affected by Alzheimer disease (AD) pathology, and its medial aspect is the most involved. We aimed to assess in vivo local structural differences in the amygdala of patients with AD using high-field MRI. METHODS: A total of 19 patients with AD (mean age 76, SD 6 years, mean Mini-Mental State Examination score [MMSE] 13, SD 4) and 19 healthy elderly controls (age 74, SD 5, MMSE 29, SD 1) were enrolled. The radial atrophy mapping technique was used to reconstruct the 3-dimensional surface of the amygdala. Maps of surface tissue loss in patients with AD vs controls were computed and statistically tested with permutation tests thresholded at p < 0.05, to correct for multiple comparisons. A digital atlas of the amygdalar nuclei was used to infer which nuclei were involved. RESULTS: Both amygdalar volumes were significantly smaller in patients with AD (right 1,508 mm³, SD 418; left 1,646, SD 419) than controls (right 2,129 mm³, SD 316; left 2,077, SD 376; p < 0.002). In the dorsomedial part, significant local tissue loss (20%-30%) was mapped in the medial and central nuclei. Ventrally, the lateral nucleus (La) and the basolateral ventral medial nucleus (BLVM) were also involved (20%-30% loss). CONCLUSIONS: We found in vivo local structural differences in the amygdala of patients with AD. The nuclei involved have known connections to the hippocampus (BLVM, La) and olfactory system (medial nucleus) and with cholinergic pathways (central nucleus). This pattern is consistent with the known pathophysiology of neural systems affected by AD.


Subject(s)
Alzheimer Disease/pathology , Amygdala/pathology , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Aged , Aged, 80 and over , Alzheimer Disease/physiopathology , Brain Mapping , Female , Humans , Male , Mental Status Schedule , Neuropsychological Tests
9.
Neurobiol Aging ; 32(12): 2319.e1-11, 2011 Dec.
Article in English | MEDLINE | ID: mdl-20541839

ABSTRACT

Rhesus macaques on a calorie restricted diet (CR) develop less age-related disease, have virtually no indication of diabetes, are protected against sarcopenia, and potentially live longer. Beneficial effects of caloric restriction likely include reductions in age-related inflammation and oxidative damage. Oligodendrocytes are particularly susceptible to inflammation and oxidative stress, therefore, we hypothesized that CR would have a beneficial effect on brain white matter and would attenuate age-related decline in this tissue. CR monkeys and controls underwent diffusion tensor imaging (DTI). A beneficial effect of CR indexed by DTI was observed in superior longitudinal fasciculus, fronto-occipital fasciculus, external capsule, and brainstem. Aging effects were observed in several regions, although CR appeared to attenuate age-related alterations in superior longitudinal fasciculus, frontal white matter, external capsule, right parahippocampal white matter, and dorsal occipital bundle. The results, however, were regionally specific and also suggested that CR is not salutary across all white matter. Further evaluation of this unique cohort of elderly primates to mortality will shed light on the ultimate benefits of an adult-onset, moderate CR diet for deferring brain aging.


Subject(s)
Aging/metabolism , Caloric Restriction/methods , Nerve Fibers, Myelinated/metabolism , Aging/pathology , Animals , Brain/metabolism , Brain/pathology , Cohort Studies , Diffusion Tensor Imaging/methods , Female , Longitudinal Studies , Macaca mulatta , Male , Nerve Fibers, Myelinated/pathology
10.
Neuroimage ; 51(3): 987-94, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20298794

ABSTRACT

Systemic levels of proinflammatory cytokines such as interleukin-6 (IL-6) increase in old age and may contribute to neural atrophy in humans. We investigated IL-6 associations with age in T1-weighted segments and microstructural diffusion indices using MRI in aged rhesus monkeys (Macaca mulatta). Further, we determined if long-term 30% calorie restriction (CR) reduced IL-6 and attenuated its association with lower tissue volume and density. Voxel-based morphometry (VBM) and diffusion-weighted voxelwise analyses were conducted. IL-6 was associated with less global gray and white matter (GM and WM), as well as smaller parietal and temporal GM volumes. Lower fractional anisotropy (FA) was associated with higher IL-6 levels along the corpus callosum and various cortical and subcortical tracts. Higher IL-6 concentrations across subjects were also associated with increased mean diffusivity (MD) throughout many brain regions, particularly in corpus callosum, cingulum, and parietal, frontal, and prefrontal areas. CR monkeys had significantly lower IL-6 and less associated atrophy. An IL-6xCR interaction across modalities also indicated that CR mitigated IL-6 related changes in several brain regions compared to controls. Peripheral IL-6 levels were correlated with atrophy in regions sensitive to aging, and this relationship was decreased by CR.


Subject(s)
Aging/metabolism , Aging/pathology , Brain/anatomy & histology , Brain/metabolism , Caloric Restriction/methods , Interleukin-6/blood , Interleukins/blood , Animals , Female , Macaca mulatta , Magnetic Resonance Imaging , Male , Organ Size
11.
J Neurol Neurosurg Psychiatry ; 74(7): 878-85, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12810771

ABSTRACT

OBJECTIVE: (1) To assess cognitive function and cerebral magnetic resonance imaging (MRI) involvement in relapsing-remitting multiple sclerosis; (2) to monitor disease evolution, cognitive dysfunction, and cerebral lesion burden over time (mean 8.5 year follow up period); (3) to study the relation between clinical, neuropsychological, and MRI data. On follow up assessment, visual and auditory oddball event related potentials (ERPs) were recorded as psychophysiological evaluation of cognitive status. Correlations between neuropsychological, MRI, and ERP data were also analysed. METHODS: Neuropsychological study assessed verbal and non-verbal IQ, deterioration index (DI) from WAIS subtests, conceptual reasoning, attention, verbal and visuospatial short-term and long term memory. MRI assessment detected presence of demyelinating lesions by using a semiquantitative method as well as cortical and subcortical atrophy over time. RESULTS: Attention, short-term and long term visuospatial memory were mildly impaired at baseline and remained unaltered longitudinally. At retesting a significant worsening of verbal long term memory (p=0.023), DI presence (p=0.041) and the increase of supratentorial and subtentorial MRI lesions load (p=0.001) emerged. Expanded disability status scale score correlated significantly with total lesion burden at both evaluations (p=0.043 and p=0.024 respectively). Temporal, occipital, and frontal horn lesions as well as cortical atrophy correlated significantly with attention and memory tests at baseline. Follow up assessment revealed significant correlation between cortical atrophy and attention as well as visuospatial short-term memory; spatial long term memory correlated significantly with lesions in body of lateral ventricle and frontal lobe. ERP study showed P300 latency abnormalities in 75% of patients, involving specifically more visual P300 (58.4 % of cases) than auditory wave (41.6 %). Visual P300 latency and amplitude correlated significantly with DI and auditory P300 latency with frontal horn and brain stem lesions. CONCLUSIONS: These findings revealed mild cognitive impairment in MS patients particularly consistent with slowing information processing over time. Increased MRI lesions do not correlate with the clinical course of the disease and cognitive deficit evolution. Thus, cognitive dysfunction could be related to disease peculiarity and not to the time course. Correlations between P300, neuropsychological, and MRI findings provide further information about ERP application to examine cognitive impairment in MS and probably to investigate their neural origin.


Subject(s)
Cerebral Cortex/pathology , Cognition Disorders/etiology , Cognition Disorders/pathology , Disabled Persons/psychology , Multiple Sclerosis/complications , Multiple Sclerosis/psychology , Adult , Atrophy , Attention , Disease Progression , Female , Humans , Intelligence Tests , Longitudinal Studies , Magnetic Resonance Imaging , Male , Memory Disorders/etiology , Multiple Sclerosis/pathology , Periodicity
SELECTION OF CITATIONS
SEARCH DETAIL
...