Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angiogenesis ; 24(2): 199-211, 2021 05.
Article in English | MEDLINE | ID: mdl-33783643

ABSTRACT

Hematopoiesis in vertebrate embryos occurs in temporally and spatially overlapping waves in close proximity to blood vascular endothelial cells. Initially, yolk sac hematopoiesis produces primitive erythrocytes, megakaryocytes, and macrophages. Thereafter, sequential waves of definitive hematopoiesis arise from yolk sac and intraembryonic hemogenic endothelia through an endothelial-to-hematopoietic transition (EHT). During EHT, the endothelial and hematopoietic transcriptional programs are tightly co-regulated to orchestrate a shift in cell identity. In the yolk sac, EHT generates erythro-myeloid progenitors, which upon migration to the liver differentiate into fetal blood cells, including erythrocytes and tissue-resident macrophages. In the dorsal aorta, EHT produces hematopoietic stem cells, which engraft the fetal liver and then the bone marrow to sustain adult hematopoiesis. Recent studies have defined the relationship between the developing vascular and hematopoietic systems in animal models, including molecular mechanisms that drive the hemato-endothelial transcription program for EHT. Moreover, human pluripotent stem cells have enabled modeling of fetal human hematopoiesis and have begun to generate cell types of clinical interest for regenerative medicine.


Subject(s)
Cell Differentiation/radiation effects , Cell Lineage/physiology , Endothelial Cells/metabolism , Endothelium/embryology , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Endothelial Cells/cytology , Endothelium/cytology , Hematopoietic Stem Cells/cytology , Humans
2.
Science ; 371(6531): 839-846, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33602855

ABSTRACT

Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium.


Subject(s)
Bile Duct Diseases/therapy , Bile Ducts, Intrahepatic/physiology , Bile Ducts/cytology , Cell- and Tissue-Based Therapy , Epithelial Cells/cytology , Organoids/transplantation , Animals , Bile , Bile Ducts/physiology , Bile Ducts, Intrahepatic/cytology , Common Bile Duct/cytology , Epithelial Cells/physiology , Gallbladder/cytology , Gene Expression Regulation , Humans , Liver/physiology , Liver Transplantation , Mesenchymal Stem Cell Transplantation , Mice , Organoids/physiology , RNA-Seq , Tissue and Organ Procurement , Transcriptome
3.
Cell Stem Cell ; 27(3): 470-481.e6, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32795399

ABSTRACT

Variability among pluripotent stem cell (PSC) lines is a prevailing issue that hampers not only experimental reproducibility but also large-scale applications and personalized cell-based therapy. This variability could result from epigenetic and genetic factors that influence stem cell behavior. Naive culture conditions minimize epigenetic fluctuation, potentially overcoming differences in PSC line differentiation potential. Here we derived PSCs from distinct mouse strains under naive conditions and show that lines from distinct genetic backgrounds have divergent differentiation capacity, confirming a major role for genetics in PSC phenotypic variability. This is explained in part through inconsistent activity of extra-cellular signaling, including the Wnt pathway, which is modulated by specific genetic variants. Overall, this study shows that genetic background plays a dominant role in driving phenotypic variability of PSCs.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Animals , Biological Variation, Population , Cell Differentiation/genetics , Genetic Variation , Mice , Reproducibility of Results
4.
Genome Biol ; 21(1): 157, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32611441

ABSTRACT

BACKGROUND: Haematopoietic stem cells (HSCs) first arise during development in the aorta-gonad-mesonephros (AGM) region of the embryo from a population of haemogenic endothelial cells which undergo endothelial-to-haematopoietic transition (EHT). Despite the progress achieved in recent years, the molecular mechanisms driving EHT are still poorly understood, especially in human where the AGM region is not easily accessible. RESULTS: In this study, we take advantage of a human pluripotent stem cell (hPSC) differentiation system and single-cell transcriptomics to recapitulate EHT in vitro and uncover mechanisms by which the haemogenic endothelium generates early haematopoietic cells. We show that most of the endothelial cells reside in a quiescent state and progress to the haematopoietic fate within a defined time window, within which they need to re-enter into the cell cycle. If cell cycle is blocked, haemogenic endothelial cells lose their EHT potential and adopt a non-haemogenic identity. Furthermore, we demonstrate that CDK4/6 and CDK1 play a key role not only in the transition but also in allowing haematopoietic progenitors to establish their full differentiation potential. CONCLUSION: We propose a direct link between the molecular machineries that control cell cycle progression and EHT.


Subject(s)
Cell Cycle , Cell Differentiation , Endothelial Cells/physiology , Hematopoietic Stem Cells/cytology , Cyclin-Dependent Kinases/metabolism , Hematopoiesis , Humans , Pluripotent Stem Cells , Single-Cell Analysis
5.
Science ; 345(6204): 1251033, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25258084

ABSTRACT

Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.


Subject(s)
Alternative Splicing , Cell Lineage/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Genetic Variation , Hematopoietic Stem Cells/metabolism , Humans , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism , RNA-Binding Proteins/metabolism , Thrombopoiesis/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...