Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 259(Pt 1): 129133, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171439

ABSTRACT

The wound microenvironment-responsive hydrogel, featuring a dually cross-linked architecture, offers distinct advantages in the realm of drug delivery due to its exceptional mechanical properties and responsiveness to stimuli. In this investigation, a versatile dually cross-linked hydrogel was synthesized. The initial framework was established through non-covalent interactions employing a self-assembling peptide indomethacin-Gly-Phe-Phe-Tyr-Gly-Arg-Gly-Asp (abbreviated as IDM-1), while the second framework underwent chemical cross-linking of chitosan (CS) mediated by genipin. This dually-network arrangement significantly bolstered the structure, proving effective for hemostatic control. In addition, hydrogels can be triggered for degradation by proteases highly expressed in the wound microenvironment, releasing drugs like indomethacin (IDM) and CS. This characteristic introduced efficient multi-faceted wound management in vitro and in vivo, such as anti-inflammatory and antibacterial activities, ultimately augmenting the wound healing process. Thus, the development of a dually cross-linked hydrogel that enables smart drug release triggered by specific wound microenvironment presents considerable potential within the realm of wound management.


Subject(s)
Chitosan , Hemostatics , Hemostatics/pharmacology , Peptides , Anti-Bacterial Agents , Hydrogels , Indomethacin
2.
RSC Adv ; 14(3): 1970-1976, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38196905

ABSTRACT

Arginine (Arg) plays a crucial and multifaceted role in various biological processes, encompassing cell division, wound healing, immune system modulation, and plant signaling. This study introduced a pair of novel chiral fluorescent probes, (R)-5 and (S)-5, constructed upon the BINOL framework, which exhibited enantiomeric selectivity and sensitivity to d-Arg/l-Arg in fluorescence experiments. These probes offered a simple, rapid, low-cost, and highly selective method for detecting Arg enantiomers, thereby providing a highly sensitive approach for their qualitative and quantitative analysis. The enantioselective fluorescence enhancement ratios {ef = [(I1 - I0)/(I2 - I0) = ΔI1/ΔI2]} of (R)-5 and (S)-5 to Arg were 1694 and 5163, respectively. Moreover, the probes demonstrated the capability to detect the concentration of d-Arg and l-Arg with a limit of detection of 4.84 × 10-7 M and 3.35 × 10-7 M, respectively, as well as determine the enantiomeric excess. These probes exhibited high chemical selectivity and enantioselectivity, enabling the identification of different configurations of Arg, quantification of Arg concentrations, and determination of the enantiomeric composition of Arg. This study provides valuable insights for the development of sensitive and selective chiral molecular detection methods, significantly advancing our comprehension of the relationship between Arg concentration and probe fluorescence response.

SELECTION OF CITATIONS
SEARCH DETAIL
...