Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Bioorg Med Chem ; 85: 117273, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37030194

ABSTRACT

GPR40 AgoPAMs are highly effective antidiabetic agents that have a dual mechanism of action, stimulating both glucose-dependent insulin and GLP-1 secretion. The early lipophilic, aromatic pyrrolidine and dihydropyrazole GPR40 AgoPAMs from our laboratory were highly efficacious in lowering plasma glucose levels in rodents but possessed off-target activities and triggered rebound hyperglycemia in rats at high doses. A focus on increasing molecular complexity through saturation and chirality in combination with reducing polarity for the pyrrolidine AgoPAM chemotype resulted in the discovery of compound 46, which shows significantly reduced off-target activities as well as improved aqueous solubility, rapid absorption, and linear PK. In vivo, compound 46 significantly lowers plasma glucose levels in rats during an oral glucose challenge yet does not demonstrate the reactive hyperglycemia effect at high doses that was observed with earlier GPR40 AgoPAMs.


Subject(s)
Blood Glucose , Hyperglycemia , Rats , Animals , Receptors, G-Protein-Coupled , Glucagon-Like Peptide 1 , Hypoglycemic Agents/pharmacology , Pyrrolidines/pharmacology , Pyrrolidines/chemistry , Insulin
4.
J Med Chem ; 65(13): 8948-8960, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35704802

ABSTRACT

While several farnesoid X receptor (FXR) agonists under clinical investigation for the treatment of nonalcoholic steatohepatitis (NASH) have shown beneficial effects, adverse effects such as pruritus and elevation of plasma lipids have limited their clinical efficacy and approvability. Herein, we report the discovery and preclinical evaluation of compound 32 (BMS-986339), a nonbile acid FXR agonist with a pharmacologically distinct profile relative to our previously reported agonist BMS-986318. Compound 32 exhibited potent in vitro and in vivo activation of FXR, albeit with a context-dependent profile that resulted in tissue-selective effects in vivo. To our knowledge, this is the first report that demonstrates differential induction of Fgf15 in the liver and ileum by FXR agonists in vivo. Compound 32 demonstrated robust antifibrotic efficacy despite reduced activation of certain genes in the liver, suggesting that the additional pharmacology of BMS-986318 does not further benefit efficacy, possibly presenting an opportunity for reduced adverse effects. Further evaluation in humans is warranted to validate this hypothesis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Receptors, Cytoplasmic and Nuclear
5.
ACS Med Chem Lett ; 12(9): 1413-1420, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34531950

ABSTRACT

Herein we report the discovery and preclinical biological evaluation of 6-(2-(5-cyclopropyl-3-(3,5-dichloropyridin-4-yl)isoxazol-4-yl)-7-azaspiro[3.5]non-1-en-7-yl)-4-(trifluoromethyl)quinoline-2-carboxylic acid, compound 1 (BMS-986318), a nonbile acid farnesoid X receptor (FXR) agonist. Compound 1 exhibits potent in vitro and in vivo activation of FXR, has a suitable ADME profile, and demonstrates efficacy in the mouse bile duct ligation model of liver cholestasis and fibrosis. The overall profile of compound 1 supports its continued evaluation.

6.
Biochem J ; 478(9): 1689-1703, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33876829

ABSTRACT

Hepatic stellate cells (HSCs) are thought to play key roles in the development of liver fibrosis. Extensive evidence has established the concept that αV integrins are involved in the activation of latent transforming growth factor ß (TGF-ß), a master regulator of the fibrotic signaling cascade. Based on mRNA and protein expression profiling data, we found that αVß1 integrin is the most abundant member of the αV integrin family in either quiescent or TGF-ß1-activated primary human HSCs. Unexpectedly, either a selective αVß1 inhibitor, Compound 8 (C8), or a pan-αV integrin inhibitor, GSK3008348, decreased TGF-ß1-activated procollagen I production in primary human HSCs, in which the role of ß1 integrin was confirmed by ITGB1 siRNA. In contrast with an Activin receptor-like kinase 5 (Alk5) inhibitor, C8 and GSK3008348 failed to inhibit TGF-ß1 induced SMAD3 and SMAD2 phosphorylation, but inhibited TGF-ß-induced phosphorylation of ERK1/2 and STAT3, suggesting that αVß1 integrin is involved in non-canonical TGF-ß signaling pathways. Consistently, ITGB1 siRNA significantly decreased phosphorylation of ERK1/2. Furthermore, a selective inhibitor of MEK1/2 blocked TGF-ß1 induced phosphorylation of ERK1/2 and decreased TGF-ß1 induced procollagen I production, while a specific inhibitor of STAT3 had no effect on TGF-ß1 induced procollagen I production. Taken together, current data indicate that αVß1 integrin can regulate TGF-ß signaling independent of its reported role in activating latent TGF-ß. Our data further support that αVß1 inhibition is a promising therapeutic target for the treatment of liver fibrosis.


Subject(s)
Hepatic Stellate Cells/metabolism , Integrin alpha5beta1/genetics , Procollagen/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , Smad2 Protein/genetics , Transforming Growth Factor beta1/genetics , Butyrates/pharmacology , Gene Expression Regulation , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/drug effects , Humans , Integrin alpha5beta1/antagonists & inhibitors , Integrin alpha5beta1/metabolism , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/genetics , MAP Kinase Kinase 2/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Naphthyridines/pharmacology , Phosphorylation/drug effects , Primary Cell Culture , Procollagen/metabolism , Pyrazoles/pharmacology , Pyrrolidines/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism
7.
J Med Chem ; 61(3): 681-694, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29316397

ABSTRACT

G protein-coupled receptor 40 (GPR40) has become an attractive target for the treatment of diabetes since it was shown clinically to promote glucose-stimulated insulin secretion. Herein, we report our efforts to develop highly selective and potent GPR40 agonists with a dual mechanism of action, promoting both glucose-dependent insulin and incretin secretion. Employing strategies to increase polarity and the ratio of sp3/sp2 character of the chemotype, we identified BMS-986118 (compound 4), which showed potent and selective GPR40 agonist activity in vitro. In vivo, compound 4 demonstrated insulinotropic efficacy and GLP-1 secretory effects resulting in improved glucose control in acute animal models.


Subject(s)
Drug Discovery , Pyrazoles/pharmacology , Pyrazoles/pharmacokinetics , Receptors, G-Protein-Coupled/agonists , Administration, Oral , Animals , Biological Availability , Humans , Male , Mice , Models, Molecular , Molecular Conformation , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Pyrrolidines/chemistry
8.
J Med Chem ; 60(4): 1417-1431, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28112924

ABSTRACT

A novel series of pyrrolidine-containing GPR40 agonists is described as a potential treatment for type 2 diabetes. The initial pyrrolidine hit was modified by moving the position of the carboxylic acid, a key pharmacophore for GPR40. Addition of a 4-cis-CF3 to the pyrrolidine improves the human GPR40 binding Ki and agonist efficacy. After further optimization, the discovery of a minor enantiomeric impurity with agonist activity led to the finding that enantiomers (R,R)-68 and (S,S)-68 have differential effects on the radioligand used for the binding assay, with (R,R)-68 potentiating the radioligand and (S,S)-68 displacing the radioligand. Compound (R,R)-68 activates both Gq-coupled intracellular Ca2+ flux and Gs-coupled cAMP accumulation. This signaling bias results in a dual mechanism of action for compound (R,R)-68, demonstrating glucose-dependent insulin and GLP-1 secretion in vitro. In vivo, compound (R,R)-68 significantly lowers plasma glucose levels in mice during an oral glucose challenge, encouraging further development of the series.


Subject(s)
Hypoglycemic Agents/pharmacology , Pyrrolidines/pharmacology , Receptors, G-Protein-Coupled/agonists , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Cell Line , Cells, Cultured , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/metabolism , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Male , Mice, Inbred C57BL , Models, Molecular , Pyrrolidines/chemistry , Pyrrolidines/pharmacokinetics , Pyrrolidines/therapeutic use , Rats , Receptors, G-Protein-Coupled/metabolism
9.
Steroids ; 72(2): 180-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17174366

ABSTRACT

Thyroid hormone (l-thyroxine, T(4), or 3,5,3'-triiodo-l-thyronine, T(3)) treatment of human papillary and follicular thyroid cancer cell lines resulted in enhanced cell proliferation, measured by proliferating cell nuclear antigen (PCNA). Thyroid hormone also induced activation of the Ras/MAPK (ERK1/2) signal transduction pathway. ERK1/2 activation and cell proliferation caused by thyroid hormone were blocked by an iodothyronine analogue, tetraiodothyroacetic acid (tetrac), that inhibits binding of iodothyronines to the cell surface receptor for thyroid hormone on integrin alphaVbeta3. A MAPK cascade inhibitor at MEK, PD 98059, also blocked hormone-induced cell proliferation. We then assessed the possibility that thyroid hormone is anti-apoptotic. We first established that resveratrol (10 microM), a pro-apoptotic agent in other cancer cells, induced p53-dependent apoptosis and c-fos, c-jun and p21 gene expression in both papillary and follicular thyroid cancer cells. Induction of apoptosis by the stilbene required Ser-15 phosphorylation of p53. Resveratrol-induced gene expression and apoptosis were inhibited more than 50% by physiological concentrations of T(4). T(4) activated MAPK in the absence of resveratrol, caused minimal Ser-15 phosphorylation of p53 and did not affect c-fos, c-jun and p21 mRNA abundance. Thus, plasma membrane-initiated activation of the MAPK cascade by thyroid hormone promotes papillary and follicular thyroid cancer cell proliferation in vitro.


Subject(s)
Apoptosis/physiology , Growth Substances/metabolism , Mitogen-Activated Protein Kinases/physiology , Thyroid Neoplasms/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Thyroid Neoplasms/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...