Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635322

ABSTRACT

Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.


Subject(s)
Brain , Macaca , Animals , Humans
2.
bioRxiv ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37546923

ABSTRACT

Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, we defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. In this study, we identified shared and unique gyral peaks in human and macaque, and investigated the similarities and differences in the spatial distribution, anatomical morphology, and functional connectivity of them.

3.
Plant Physiol Biochem ; 162: 363-377, 2021 May.
Article in English | MEDLINE | ID: mdl-33730621

ABSTRACT

Thermosensitive cytoplasmic male sterile (TCMS) lines play an important role in wheat breeding, heterosis utilization, and germplasm innovation. MicroRNAs (miRNAs) can regulate the expression level of target genes by inhibiting the translation of these genes. YS3038 is a wheat TCMS line. In this study, the fertility conversion mechanism of YS3038 was studied by examining the abortion characteristics of YS3038, the regulation pattern of miRNAs and the target genes of miRNAs in YS3038. MiRNA-seq was performed on three important stages of YS3038 under sterile and fertile conditions. Then, the clean reads were aligned with some databases to filter other ncRNAs and repeats. The known miRNAs and novel miRNAs were predicted by sequence comparison with known miRNAs from miRbase. Differential expression of miRNAs between different stages and between different fertile conditions was analyzed, and functional analysis of target genes with opposite expression patterns as those of the miRNAs was conducted. The Ubisch bodies and microspores of sterile anthers were covered with filamentous materials. The degradation of the tapetum cells, the chloroplast structure of endothecium cells, and the microspore structure were abnormal. Microspore development was hindered from the late uninucleate stage to the binucleate stage. Twenty, 52, and 68 differentially expressed miRNAs (DEmiRs) were identified at the early uninucleate, late uninucleate, and binucleate stages, respectively, and there were 0, 7, and 72 differentially expressed target genes (DETGs), respectively, at these three stages. At the binucleate stage, 29 DEmiRs had 41 target mRNAs in total, and the expression patterns of the 41 target mRNAs were opposite to those of the 29 miRNAs. Fifteen significantly enriched KEGG pathways were associated with the 41 target mRNAs. Leucine-rich repeat receptor-like kinases (LRR-RLKs) play important roles in plant developmental and physiological processes. Some studies have shown that the expression of LRR-RLKs is related to the differentiation of microsporocytes and tapetum cells and to male sterility. An LRR-RLK (TaeRPK) gene was silenced by the barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) method, and the seed setting rates of the TaeRPK-silenced plants (3.51%) were significantly lower than those of the negative control plants (88.78%) (P < 0.01). Thus, the TaeRPK gene is likely to be involved in the fertility conversion of YS3038.


Subject(s)
Infertility, Male , MicroRNAs , Gene Expression Regulation, Plant , Humans , Male , MicroRNAs/genetics , Plant Breeding , Plant Infertility/genetics , Triticum/genetics
4.
Sensors (Basel) ; 19(9)2019 May 02.
Article in English | MEDLINE | ID: mdl-31052577

ABSTRACT

The hydropower generator unit (HGU) is a vital piece of equipment for frequency and peaking modulation in the power grid. Its vibration signal contains a wealth of information and status characteristics. Therefore, it is important to predict the vibration tendency of HGUs using collected real-time data, and achieve predictive maintenance as well. In previous studies, most prediction methods have only focused on enhancing the stability or accuracy. However, it is insufficient to consider only one criterion (stability or accuracy) in vibration tendency prediction. In this paper, an intelligence vibration tendency prediction method is proposed to simultaneously achieve strong stability and high accuracy, where vibration signal preprocessing, feature selection and prediction methods are integrated in a multi-objective optimization framework. Firstly, raw sensor signals are decomposed into several modes by empirical wavelet transform (EWT). Subsequently, the refactored modes can be obtained by the sample entropy-based reconstruction strategy. Then, important input features are selected using the Gram-Schmidt orthogonal (GSO) process. Later, the refactored modes are predicted through kernel extreme learning machine (KELM). Finally, the parameters of GSO and KELM are synchronously optimized by the multi-objective salp swarm algorithm. A case study and analysis of the mixed-flow HGU data in China was conducted, and the results show that the proposed model performs better in terms of predicting stability and accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...