Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Phytomedicine ; 130: 155723, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38815405

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurological disorder. There is a considerable unmet medical need among those suffering from it. HYPOTHESIS AND PURPOSE: Given the link between type-2 diabetes mellitus (T2DM) and AD, hypoglycemic traditional Chinese medicine formulas (TCMFs) may be a treatment for AD. We investigated the possibility of identifying anti-AD medicines in hypoglycemic TCMFs and presented another option for the screening of AD medications. STUDY DESIGN AND METHODS: Paralysis of the transgenic Caenorhabditis elegans (C. elegans) strain CL4176 (caused by amyloid beta (Aß)1-42 aggregates) was used to evaluate the anti-AD effect. The toxicity and neurodegeneration induced by neuronal expression of Aß in the transgenic C. elegans strain CL2355 were determined using a 5-hydroxytryptamine (5-HT) assay. The transgenic Aß-expressing strain CL 2006 and transgenic tau-expressing strain BR5270 were used to explore the effect of TCMFs on protein expression in C. elegans using ELISAs. Then, network pharmacology was used to determine the mechanism of action. The Traditional Chinese Medicine Inheritance Support System platform was used to investigate prescription patterns, core drugs, and optimum combinations of hypoglycemic TCMFs for AD. RESULTS: Sixteen hypoglycemic TCMFs prolonged the PT50 (half paralysis time) of the CL4176 strain of C. elegans, reduced the percentage of worms paralyzed. The results of network pharmacology showed that prostaglandin-endoperoxide synthase 2 (PTGS2) and acetylcholine esterase (AChE) are main targets of hypoglycemic TCMFs. Enriched pathway analysis showed that the cholinergic receptor-related pathway was the core pathway of hypoglycemic TCMFs. According to the "four qi and five flavors" system of TCM theory, the main pharmacological qualities were "cold" and "sweet." Through the analysis by TCMISS, we found that Huangqi-Gegen drug pair as the significant Chinese herbs of hypoglycemic TCMFs. The Huangqi-Gegen pairing had the most robust therapeutic effect when delivered at a 2:1 (v/v) ratio. It reduced the paralysis caused by 5-HT, decreased protein expression of AChE and PTGS2, and reduced Aß deposition in the brain of the CL2006 strain of C. elegans. CONCLUSIONS: Huangqi-Gegen is a promising treatment of AD, and its mechanism may be induced by suppressing the protein production of AChE and PTGS2, reducing 5-HT intake, and then decreasing Aß deposition.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid beta-Peptides , Animals, Genetically Modified , Caenorhabditis elegans , Drugs, Chinese Herbal , Hypoglycemic Agents , Animals , Caenorhabditis elegans/drug effects , Alzheimer Disease/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Amyloid beta-Peptides/metabolism , Hypoglycemic Agents/pharmacology , Acetylcholinesterase/metabolism , Network Pharmacology , Medicine, Chinese Traditional/methods , Peptide Fragments , Diabetes Mellitus, Type 2/drug therapy
2.
Biomed Pharmacother ; 171: 116158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38242039

ABSTRACT

Alzheimer's disease (AD)-related brain deterioration is linked to the type 2 diabetes mellitus (T2DM) features hyperglycemia, hyperinsulinemia, and insulin resistance. Hypoxia as a common risk factor for both AD and T2DM. Hypoxia-inducible factor-1 alpha (HIF-1α) acts as the main regulator of the hypoxia response and may be a key target in the comorbidity of AD and T2DM. HIF-1α expression is closely related to hyperglycemia, insulin resistance, and inflammation. Tissue oxygen consumption disrupts HIF-1α homeostasis, leading to increased reactive oxygen species levels and the inhibition of insulin receptor pathway activity, causing neuroinflammation, insulin resistance, abnormal Aß deposition, and tau hyperphosphorylation. HIF-1α activation also leads to the deposition of Aß by promoting the abnormal shearing of amyloid precursor protein and inhibiting the degradation of Aß, and it promotes tau hyperphosphorylation by activating oxidative stress and the activation of astrocytes, which further exasperates AD. Therefore, we believe that HIF-α has great potential as a target for the treatment of AD. Importantly, the intracellular homeostasis of HIF-1α is a more crucial factor than its expression level.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Humans , Alzheimer Disease/metabolism , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit
SELECTION OF CITATIONS
SEARCH DETAIL