Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Phytomedicine ; 129: 155683, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38701543

ABSTRACT

BACKGROUND: Peritoneal dialysis (PD) is a successful renal replacement therapy for end-stage renal disease. Long-term PD causes mesothelial-mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs), leading to peritoneal fibrosis (PF), which reduces the efficiency of PD. Macrophages are thought to play a role in the onset and perpetuation of peritoneal injury. However, the mechanisms by which macrophages-PMCs communication regulates peritoneal fibrosis are not fully understood resulting in a lack of disease-modifying drugs. Astragaloside IV (AS-IV) possessed anti-fibrotic effect towards PF in PD whereas the mechanistic effect of AS-IV in PD is unknown. METHODS: The primary macrophages were extracted and treated with LPS or AS-IV, then co-cultured with primary PMCs in transwell plates. The macrophage-derived exosomes were extracted and purified by differential centrifugation, then co-cultured with primary PMCs. Small RNA-seq was used to detect differential miRNAs in exosomes, and then KEGG analysis and q-PCR were performed for validation. In vivo PD rat models were established by inducing with high-glucose peritoneal dialysis fluid and different concentrations of AS-IV and exosomes were intraperitoneal injection. Through qRT-PCR, western blotting, and luciferase reporting, candidate proteins and pathways were validated in vivo and in vitro. The functions of the validated pathways were further investigated using the mimic or inhibition strategy. PF and inflammatory situations were assessed. RESULTS: We found AS-IV reversed the MMT of PMCs caused by LPS-stimulated macrophages and the improving effect was mediated by macrophage-derived exosomes in vitro. We also demonstrated that AS-IV significantly reduced the MMT of PMCs in vitro or PF in a rat PD model via regulating exosome-contained miR-204-5p which targets Foxc1/ß-catenin signaling pathway. CONCLUSION: AS-IV attenuates macrophage-derived exosomes induced fibrosis in PD through the miR-204-5p/Foxc1 pathway.

2.
Heliyon ; 10(8): e29164, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644881

ABSTRACT

Gypenosides (Gyp) are bioactive components of Gynostemma pentaphyllum that have a variety of pharmacological properties. Extracts of G. pentaphyllum have been found to be effective in the reduction of blood sugar and lipids and prevention of atherosclerosis. Here, the functions of Gyp and the mechanisms underlying their effects on atherosclerosis were investigated. Mice were allocated to three groups, namely, the control (C57BL/6), atherosclerosis model (ApoE-/- mice with high-fat diet), and Gyp-treated groups. Differentially expressed mRNAs, miRNAs, circRNA, and differential metabolites among the groups were analyzed. The results showed that "Fatty acid metabolism", "Fatty acid elongation", "Cytokine-cytokine receptor interaction", and "PI3K-Akt signaling pathway", amongst others, were involved in treatment process. Differentially expressed genes, including Fabp1, Apoe, FADS1, ADH1, SYNPO2, and Lmod1were also identified. Mmu-miR-30a and mmu-miR-30e showed reduced expression in atherosclerosis models but were increased following Gyp treatment, suggesting involvement in the effects of Gyp. In addition, chr5:150604177-150608440 were found to interact with mmu-miR-30a and mmu-miR-30e to regulate their abundance. In terms of metabolomics, Gyp may regulate biological processes involving PGD2 and PGJ2, potentially alleviating atherosclerosis. In conclusion, Gyp appeared to have complex effects on atherosclerosis, most of which were positive. These results support the use of Gyp in the treatment of atherosclerosis.

3.
Environ Pollut ; 349: 123933, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583795

ABSTRACT

The effects of two benthonic species, Perinereis aibuhitensis and Matuta planipes Fabricius, on the release of polycyclic aromatic hydrocarbons (PAHs) from sediments were investigated using a sediment-seawater microcosm. A Level IV fugacity model was used to simulate the behavior and fate of PAHs in the environment. This study revealed that both benthos significantly influenced the release of PAHs, and Matuta planipes Fabricius had a stronger disturbance effect than another. The final concentrations of Matuta planipes Fabricius group, Perinereis aibuhitensis group and the control group in the seawater phase reached 10.8, 9.94 and 7.90 µg/L, respectively. There were certain differences in the behaviour of the two benthonic species. Matuta planipes Fabricius caused more sediment resuspension, while Perinereis aibuhitensis increased the total organic carbon (TOC) content in the environment. The vertical concentration distribution of sediment indicated that vertical mixing was slightly stronger in the Matuta planipes Fabricius group than that in the Perinereis aibuhitensis group. The fugacity model effectively simulated the release behavior of PAHs, providing insight into PAH transport and distribution. The results demonstrated that bioturbation could promote the release of PAHs from seawater. The amount of PAHs released was significantly correlated with the biological habits of the benthos.


Subject(s)
Geologic Sediments , Polycyclic Aromatic Hydrocarbons , Seawater , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Seawater/chemistry , Environmental Monitoring , Animals
4.
J Hazard Mater ; 469: 133994, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38503210

ABSTRACT

The efficient remediation of the soil co-contaminated with heavy metals and polybrominated diphenyl ethers (PBDEs) from electronic disassembly zones is a new challenge. Here, we screened a fungus of F. solani (F.s) can immobilize Cd and remove PBDEs. wIt combined with tourmaline enhances the remediation of co- pollutants in the soil. Furthermore, the environment risks of the enhanced technology were assessed through the amount of Cd/BDE-153 in Amaranthus tricolor L. (amaranth) migrated from soil, as well as the changes of soil microorganism communities and enzyme activities. The results showed the combined treatment of tourmaline and F.s made the removal percentage of BDE-153 in rhizosphere soil co-contaminated with BDE-153 and Cd reached 46.5%. And the weak acid extractable Cd in rhizosphere soil decreased by 33.7% compared to control group. In addition, the combined remediation technology resulted in a 32.5% (22.8%), 45.5% (37.2%), and 50.7% (38.1%) decrease in BDE-153 (Cd) content in the roots, stems, and leaves of amaranth, respectively. Tourmaline combined with F.s can significantly increase soil microorganism diversity, soil dehydrogenase and urease activities, further improving the remediation rate of Cd and BDE-153co-pollutants in soil and the biomass of amaranth. This study provides the remediation technology of soil co-contaminated with heavy metal and PBDEs and ensure the maintenance of food security.


Subject(s)
Amaranthus , Environmental Pollutants , Metals, Heavy , Polybrominated Biphenyls , Silicates , Soil Pollutants , Soil , Cadmium , Biodegradation, Environmental , Halogenated Diphenyl Ethers/analysis , Soil Pollutants/analysis , Metals, Heavy/analysis
5.
Curr Protein Pept Sci ; 25(4): 326-338, 2024.
Article in English | MEDLINE | ID: mdl-38243942

ABSTRACT

BACKGROUND: Neuropeptide pedal peptide (PP) and orcokinin (OK), which are structurally related active peptides, have been widely discovered in invertebrates and constitute the PP/OK neuropeptide family. They have complex structures and play myriad roles in physiological processes. To date, there have been no related reports of PP/OK-type neuropeptide in cephalopods, which possess a highly differentiated multi-lobular brain. METHODS: Rapid Amplification of cDNA Ends (RACE) was employed to obtain the open reading frame (ORF) of PP/OK-type neuropeptide in Sepiella japonica (termed as Sj-PP/OK). Various software were used for sequence analysis. Semi-quantitative PCR was applied to analyze the tissue distribution profile, quantitative real-time PCR (qRT-PCR) was used to study spatio-temporal expression throughout the entire growth and development period, and in situ hybridization (ISH) was employed to observe the tissue location of Sj-PP/OK. RESULTS: in the present study, we identified the ORF of Sj-PP/OK. The putative precursor of Sj-PP/ OK encodes 22 mature peptides, of which only tridecapeptides could undergo post-translationally amidated at C-terminus. Each of these tridecapeptides possesses the most conserved and frequent N-terminus Asp-Ser-Ile (DSI). Sequence analysis revealed that Sj-PP/OK shared comparatively low identity with other invertebrates PP or OK. The tissue distribution profile showed differences in the expression level of Sj-PP/OK between male and female. qRT-PCR data demonstrated that Sj-PP/OK was widely distributed in various tissues, with its expression level increasing continuously in the brain, optic lobe, liver, and nidamental gland throughout the entire growth and development stages until gonad maturation. ISH detected that Sj-PP/OK positive signals existed in almost all regions of the optic lobe except the plexiform zone, the outer edge of all functional lobes in the brain, epithelial cells and the outer membrane layer of the accessory nidamental gland. These findings suggest that Sj-PP/OK might play a role in the regulation of reproduction, such as vitellogenin synthesis, restoration, and ova encapsulation. CONCLUSION: The study indicated that Sj-PP/OK may be involved in the neuroendocrine regulation in cephalopods, providing primary theoretical basis for further studies of its regulation role in reproduction.


Subject(s)
Amino Acid Sequence , Decapodiformes , In Situ Hybridization , Neuropeptides , Animals , Neuropeptides/genetics , Neuropeptides/metabolism , Neuropeptides/chemistry , Decapodiformes/genetics , Decapodiformes/metabolism , In Situ Hybridization/methods , Phylogeny , Open Reading Frames , Cloning, Molecular , Base Sequence , Female
6.
Sci Total Environ ; 913: 169542, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38141990

ABSTRACT

Thallium is a rare metal known for its highly toxic nature. Recent research has indicated that the precise determination of Tl isotopic compositions using Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP MS) provides new opportunities for understanding Tl geochemical behavior. While isotopic fractionation of Tl derived from anthropogenic activities (e.g., mining, smelting) have been reported, there is limited information regarding Tl influenced by both natural weathering processes and anthropogenic origins. Herein, we investigated, for the first time, the Tl isotopic compositions in soils across a representative Tl-rich depth profile from the Lanmuchang (LMC) quicksilver mine (southwest China) in the low-temperature metallogenesis zone. The results showed significant variations in Tl isotope signatures (ε205Tl) among different soil layers, ranging from -0.23 to 3.79, with heavier isotope-205Tl enrichment observed in the bottom layers of the profile (ε205Tl = 2.18-3.79). This enrichment of 205Tl was not solely correlated with the degree of soil weathering but was also partially associated with oxidation of Tl(I) by Fe (hydr)oxide minerals. Quantitative calculation using ε205Tl vs. 1/Tl data further indicated that the Tl enrichment across the soil depth profile was predominantly derived from anthropogenic origins. All these findings highlight that the robustness and reliability of Tl isotopes as a proxy for identifying both anthropogenic and geogenic sources, as well as tracing chemical alterations and redox-controlled mineralogical processes of Tl in soils. The nascent application of Tl isotopes herein not only offers valuable insights into the behavior of Tl in surface environments, but also establishes a framework for source apportionment in soils under similar circumstances.

7.
Blood Adv ; 7(21): 6506-6519, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37567157

ABSTRACT

Hematopoiesis produces diverse blood cell lineages to meet the basal needs and sudden demands of injury or infection. A rapid response to such challenges requires the expansion of specific lineages and a prompt return to balanced steady-state levels, necessitating tightly coordinated regulation. Previously we identified a requirement for the zinc finger and broad complex, tramtrak, bric-a-brac domain-containing 11 (ZBTB11) transcription factor in definitive hematopoiesis using a forward genetic screen for zebrafish myeloid mutants. To understand its relevance to mammalian systems, we extended these studies to mice. When Zbtb11 was deleted in the hematopoietic compartment, embryos died at embryonic day (E) 18.5 with hematopoietic failure. Zbtb11 hematopoietic knockout (Zbtb11hKO) hematopoietic stem cells (HSCs) were overabundantly specified from E14.5 to E17.5 compared with those in controls. Overspecification was accompanied by loss of stemness, inability to differentiate into committed progenitors and mature lineages in the fetal liver, failure to seed fetal bone marrow, and total hematopoietic failure. The Zbtb11hKO HSCs did not proliferate in vitro and were constrained in cell cycle progression, demonstrating the cell-intrinsic role of Zbtb11 in proliferation and cell cycle regulation in mammalian HSCs. Single-cell RNA sequencing analysis identified that Zbtb11-deficient HSCs were underrepresented in an erythroid-primed subpopulation and showed downregulation of oxidative phosphorylation pathways and dysregulation of genes associated with the hematopoietic niche. We identified a cell-intrinsic requirement for Zbtb11-mediated gene regulatory networks in sustaining a pool of maturation-capable HSCs and progenitor cells.


Subject(s)
Hematopoietic Stem Cells , Zebrafish , Animals , Mice , Gene Expression Regulation , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Mammals/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish/metabolism
8.
J Hazard Mater ; 460: 132351, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37625296

ABSTRACT

To understand the pollution status and risk levels in the Laizhou Bay, the spatiotemporal distribution, source, and ecological risk of 16 polycyclic aromatic hydrocarbons (PAHs) and 20 substituted PAHs (SPAHs) were studied in surface sediments in 2022. The findings indicated significant seasonal differences in the concentrations of PAHs and SPAHs under the influences of precipitation, temperature, light, and human activities, with higher storage levels in summer than in spring, and there was also a spatial distribution trend of estuary > coast > offshore. 2-Nitrofluorene (2-NF) and 2-methylnaphthalene (2-MN) were the most abundant components of SPAHs in both spring and summer, with levels of 21.44 ng/g and 17.89 ng/g in spring, 43.22 ng/g and 25.51 ng/g in summer, respectively. The results of the diagnostic ratio and principal component analysis - multiple linear regression identified sources of PAHs and SPAHs as combustion sources, including petroleum, coal, and biomass. The risk level of PAHs was low-to-moderate according to the toxicity equivalent quotient (TEQ) and risk quotient. A novel calculation method based on TEQ was proposed to assess the ecological risk of SPAHs, and the results indicated that the risk level of SPAHs was moderate-to-high.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Humans , Bays , Biomass , China , Risk Assessment
9.
Fish Shellfish Immunol ; 140: 108903, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423402

ABSTRACT

The common Chinese cuttlefish (Sepiella japonica) is an essential species for stock enhancement by releasing juveniles in the East China Sea now. S. japonica is susceptible to bacterial diseases during parental breeding. In vertebrates, Interleukin-17 (IL-17) cytokine family plays critical roles in both acute and chronic inflammatory responses. In Cephalopoda, few studies have been reported on IL-17 genes so far. In this study, twenty IL-17 transcripts obtained from S. japonica were divided into eight groups (designated as Sj_IL-17-1 to Sj_IL-17-8). Multiple alignment analysis showed that IL-17s in S. japonica and human both contained four ß-folds (ß1-ß4), except for Sj_IL-17-6 with two ß-folds (ß1 and ß2), and the third and fourth ß-folds of Sj_IL-17-5 and Sj_IL-17-8 were longer than those of other Sj_IL-17. Protein structure and conserved motifs analysis demonstrated that Sj_IL-17-5 and Sj_IL-17-6 displayed different protein structure with respect to other six Sj_IL-17 proteins. The homology and phylogenetic analysis of amino acids showed that Sj_IL-17-5, Sj_IL-17-6 and Sj_IL-17-8 had low homology with the other five Sj_IL-17s. Eight Sj_IL-17 mRNAs were ubiquitously expressed in ten examined tissues, with dominant expression in the hemolymph. qRT-PCR data showed that the mRNA expression levels of Sj_IL-17-2, Sj_IL-17-3, Sj_IL-17-6, and Sj_IL-17-8 were significantly up-regulated in infected cuttlefishes, and Sj_IL-17-2, Sj_IL-17-6, Sj_IL-17-7, and Sj_IL-17-8 mRNAs Awere significantly up-regulated after bath infection of Vibrio harveyi, suggesting that certain Sj_IL-17s were involved in the immune response of S. japonica against V. harveyi infection. These results implied that Sj_IL-17s were likely to have distinct functional diversification. This study aims to understand the involvement of Sj_IL-17 genes in immune responses of cuttlefish against bacterial infections.


Subject(s)
Decapodiformes , Interleukin-17 , Vibrio Infections , Vibrio , Animals , Humans , Decapodiformes/genetics , Decapodiformes/immunology , Decapodiformes/microbiology , Interleukin-17/chemistry , Interleukin-17/genetics , Interleukin-17/immunology , Phylogeny , Vibrio Infections/immunology , Vibrio Infections/veterinary , China
10.
Biodegradation ; 34(6): 519-532, 2023 12.
Article in English | MEDLINE | ID: mdl-37354271

ABSTRACT

At present, cometabolic degradation is an extensive method for the biological removal of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in the marine environment. However, due to the refractory to degradation and high toxicity, there are few studies on pyrene (PYR) cometabolic degradation with phenanthrene (PHE) as substrate. In this study, a Pseudomonas stutzeri DJP1 strain isolated from sediments was used in the cometabolic system of PHE and PYR. The biomass and the activity of key enzymes such as dehydrogenase and catechol 12 dioxygenase of strain were improved, but the enhancement of biotoxicity resulted in the inhibition of cometabolism simultaneously. Seven metabolites were identified respectively in PYR, PHE degradation cultures. It was speculated that the cometabolism of PHE and PYR had a common phthalic acid pathway, and the degradation pathway of PHE was included in the downstream pathway of PYR. The functional genes such as PhdF, NidD and CatA involved in DJP1 degradation were revealed by Genome analysis. This study provides a reference for the biodegradation of PYR and PHE in real marine environment.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Pseudomonas stutzeri , Pseudomonas stutzeri/genetics , Pseudomonas stutzeri/metabolism , Phenanthrenes/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Pyrenes/metabolism , Biodegradation, Environmental
11.
ACS Sens ; 8(6): 2375-2382, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37253195

ABSTRACT

The electrical vapor sensor based on carbon nanotubes (CNTs) has attracted wide attention due to its excellent conductivity, stable interfacial structure, and low dimensional quantum effects. However, the conductivity and contact interface activity were still limited by the random distribution of coated CNTs, which led to limited performance. We developed a new strategy to unify the CNT directions with image fractal designing of the electrode system. In such a system, directional aligned CNTs were gained under a well-modulated electric field, leading to microscale CNT exciton highways and molecule-scale host-guest site activation. The carrier mobility of the aligned CNT device is 20-fold higher than that of the random network CNT device. With excellent electrical properties, such modulated CNT devices based on fractal electrodes behave as an ultrasensitive vapor sensor for methylphenethylamine, a mimic of illicit drug methamphetamine. The detection limit reached as low as 0.998 ppq, 6 orders of magnitude sensitive than the reported 5 ppb record based on interdigital electrodes with random distributed CNTs. Since the device is easily fabricated in wafer-level and compatible with the CMOS process, such a fractal design strategy for aligned CNT preparation will be widely applied in a variety of wafer-level electrical functional devices.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Fractals , Electrodes , Electric Conductivity , Gases
12.
Environ Sci Pollut Res Int ; 30(30): 75735-75751, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37222889

ABSTRACT

To improve the accuracy of early warning on coal spontaneous combustion (CSC), this paper, on the basis of the principle of preferential selection of index gases in CSC process, carries out fitting analysis of the variation curve of index gas data with coal temperature by combining logistic fitting model, then establishes a CSC graded warning system based on positive pressure beam tube monitoring, and determines CO, O2, φ(CO)/φ(O2), C2H4, C2H6, φ(C2H4)/φ(C2H6) as the index gases for predicting and forecasting CSC, and accurately divides the CSC process into seven levels of early warning: safe, gray, blue, yellow, orange, red, and black. Applying the CSC positive pressure beam tube monitoring system to Dongtan coal mine and analyzing the error by manual sampling and sampling by positive pressure beam tube system, we find that the error is less than 0.1%. Monitoring of several working faces, we get that the CO and CH4 concentrations of 14,320 working face are higher than the normal level at the beginning of mining, and the 100 × CO/ΔO2 value is higher than the gray warning threshold of 0.1, and the warning level is gray warning. After taking timely preventive measures against coal oxidation and warming, the CO and CH4 concentrations return to the normal level and the warning level drops to the safe level. This paper improves the monitoring, identifying and early warning capabilities of underground CSC in its early stage.


Subject(s)
Coal Mining , Spontaneous Combustion , Coal/analysis , Gases/analysis , Mining , Temperature
13.
Article in English | MEDLINE | ID: mdl-37070455

ABSTRACT

OBJECTIVE: Autoimmune diseases (AD) account for a high percentage of the population. One of the most prevalent is autoimmune thyroiditis (AIT). However, the therapeutic effects of Buzhong Yiqi (BZYQ) decoction on AIT have not been studied yet. The majority of the present study was conducted on NOD.H-2h4 mice in an attempt to ascertain the therapeutic effects of BZYQ decoction on AIT. METHODS: The 0.05% sodium iodide water (NaI)-induced AIT mice model was established. A total of nine NOD.H-2h4 mice were randomly divided into three groups: the normal group provided with regular water, the model group drinking freely 0.05% NaI, and the treatment group treated with BZYQ decoction (9.56 g/kg) after NaI supplementation (NaI + BZYQ). BZYQ decoction was administered orally once daily for eight weeks. The thyroid histopathology test was used to measure the severity of lymphocytic infiltration. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of anti-thyroglobulin antibody (TgAb), interleukin (IL)-1ß, IL-6, and IL-17. The Illumina HiSeq X sequencing platform was utilized to analyze the thyroid tissue by mRNA expression profiles. Bioinformatics analysis was used to investigate the biological function of the differentially expressed mRNAs. In addition, the expression of Carbonyl Reductase 1 (CBR1), 6-Pyruvoyltetrahydropterin Synthase (PTS), Major Histocompatibility Complex, Class II (H2-EB1), Interleukin 23 Subunit Alpha (IL-23A), Interleukin 6 Receptor (IL-6RA), and Janus Kinase 1 (JAK1) was measured by quantitative real-time PCR (qRT-PCR). RESULTS: The treatment group exhibited significantly lower rates of thyroiditis and lymphocyte infiltration compared to the model group. Serum levels of TgAb, IL-1ß, IL-6, and IL-17 were significantly higher in the model group, but they fell dramatically after BZYQ decoction administration. According to our results, 495 genes showed differential expression in the model group compared to the control group. Six hundred twenty-five genes were significantly deregulated in the treatment group compared to the model group. Bioinformatic analysis showed that most mRNAs were associated with immune-inflammatory responses and were involved in multiple signaling pathways, including folate biosynthesis and the Th17 cell differentiation pathway. CBR1, PTS, H2-EB1, IL23A, IL-6RA and JAK1 mRNA participated in folate biosynthesis and the Th17 cell differentiation pathway. The qRT-PCR analysis confirmed that the above mRNAs were regulated in the model group compared to the treatment group Conclusion: The results of this investigation have revealed novel insights into the molecular mechanism of action of BZYQ decoction against AIT. The mechanism may be partially attributed to the regulation of mRNA expression and pathways.

14.
Nat Commun ; 14(1): 2099, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055407

ABSTRACT

Megakaryocytes (MK) generate platelets. Recently, we and others, have reported MK also regulate hematopoietic stem cells (HSC). Here we show high ploidy large cytoplasmic megakaryocytes (LCM) are critical negative regulators of HSC and critical for platelet formation. Using a mouse knockout model (Pf4-Srsf3Δ/Δ) with normal MK numbers, but essentially devoid of LCM, we demonstrate a pronounced increase in BM HSC concurrent with endogenous mobilization and extramedullary hematopoiesis. Severe thrombocytopenia is observed in animals with diminished LCM, although there is no change in MK ploidy distribution, uncoupling endoreduplication and platelet production. When HSC isolated from a microenvironment essentially devoid of LCM reconstitute hematopoiesis in lethally irradiated mice, the absence of LCM increases HSC in BM, blood and spleen, and the recapitulation of thrombocytopenia. In contrast, following a competitive transplant using minimal numbers of WT HSC together with HSC from a microenvironment with diminished LCM, sufficient WT HSC-generated LCM regulates a normal HSC pool and prevents thrombocytopenia. Importantly, LCM are conserved in humans.


Subject(s)
Megakaryocytes , Thrombocytopenia , Humans , Animals , Megakaryocytes/metabolism , Hematopoietic Stem Cells/metabolism , Blood Platelets , Thrombopoiesis/genetics , Hematopoiesis/genetics , Thrombocytopenia/metabolism , Disease Models, Animal , Ploidies , Serine-Arginine Splicing Factors/metabolism
15.
Sci Total Environ ; 882: 163404, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37059145

ABSTRACT

Thallium (Tl) is a highly toxic heavy metal, which is harmful to plants and animals even in trace amounts. Migration behaviors of Tl in paddy soils system remain largely unknown. Herein, Tl isotopic compositions have been employed for the first time to explore Tl transfer and pathway in paddy soil system. The results showed considerably large Tl isotopic variations (ε205Tl = -0.99 ± 0.45 ~ 24.57 ± 0.27), which may result from interconversion between Tl(I) and Tl(III) under alternative redox conditions in the paddy system. Overall higher ε205Tl values of paddy soils in the deeper layers were probably attributed to abundant presence of Fe/Mn (hydr)oxides and occasionally extreme redox conditions during alternative dry-wet process which oxidized Tl(I) to Tl(III). A ternary mixing model using Tl isotopic compositions further disclosed that industrial waste contributed predominantly to Tl contamination in the studied soil, with an average contribution rate of 73.23%. All these findings indicate that Tl isotopes can be used as an efficient tracer for fingerprinting Tl pathway in complicated scenarios even under varied redox conditions, providing significant prospect in diverse environmental applications.

16.
Brain Behav ; 13(4): e2929, 2023 04.
Article in English | MEDLINE | ID: mdl-36879365

ABSTRACT

PURPOSE: This study aimed to explore circular RNA (circRNA) hsa_circ_0000690 as a potential biomarker for diagnosis and prognosis of intracranial aneurysm (IA) and its relationship with clinical factors and complications of IA. MATERIAL/METHODS: 216 IA patients admitted to the neurosurgery department of our hospital from January 2019 to December 2020 were selected as the experimental group, and 186 healthy volunteers were selected as the control group. The expression of hsa_circ_0000690 in peripheral blood was detected by quantitative real-time PCR, and its diagnostic value was assessed by receiver operating characteristic curve. Relationship between hsa_circ_0000690 and clinical factors of IA was assessed by chi-square test. Nonparametric test was used in univariate analysis, and regression analysis was used in multivariate analysis. Multivariate Cox proportional hazards regression analysis was used to analyze the survival time. RESULTS: CircRNA hsa_circ_0000690 of IA patients was relatively lower than that in the control group (p < .001). The AUC of hsa_circ_0000690 was 0.752, the specificity was 0.780, and sensitivity was 0.620, with diagnostic threshold of 0.0449. In addition, hsa_circ_0000690 expression was correlated with Glasgow Coma Scale, the volume of subarachnoid hemorrhage, modified Fisher scale, Hunt-Hess levels and surgical type. For hydrocephalus and delayed cerebral ischemia, hsa_circ_0000690 was significant in univariate analysis, but nonsignificant in multivariate analysis. For prognosis, hsa_circ_0000690 was significantly associated with modified Rankin Scales after surgery for 3 months, but not associated with survival time. CONCLUSIONS: The expression of hsa_circ_0000690 can act as a diagnostic marker for IA and predict the prognosis of 3 months after operation and is closely related to the volume of hemorrhage.


Subject(s)
Intracranial Aneurysm , Subarachnoid Hemorrhage , Humans , RNA, Circular/genetics , RNA/metabolism , Intracranial Aneurysm/diagnosis , Intracranial Aneurysm/genetics , Biomarkers , Prognosis , Subarachnoid Hemorrhage/diagnosis , Subarachnoid Hemorrhage/genetics
17.
Phys Rev Lett ; 130(7): 078101, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867811

ABSTRACT

Topological defects usually emerge and vary during the phase transition of ordered systems. Their roles in thermodynamic order evolution keep being the frontier of modern condensed matter physics. Here, we study the generations of topological defects and their guidance on the order evolution during the phase transition of liquid crystals (LCs). With a given preset photopatterned alignment, two different types of topological defects are achieved depending on the thermodynamic process. Because of the memory effect of LC director field across the Nematic-Smectic (N-S) phase transition, a stable array of toric focal conic domains (TFCDs) and a frustrated one are generated in S phase, respectively. The frustrated one transfers to a metastable TFCD array with a smaller lattice constant, and further changes to a crossed-walls type N state due to the inheritance of orientational order. A free energy on temperature diagram and corresponding textures vividly describe the phase transition process and the roles of topological defects in the order evolution across the N-S phase transition. This Letter reveals the behaviors and mechanisms of topological defects on order evolution during phase transitions. It paves a way for investigating topological defect guided order evolution which is ubiquitous in soft matter and other ordered systems.

18.
J Ethnopharmacol ; 309: 116343, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36906159

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine, Centella asiatica (L.) Urb., has been extensively utilized in clinics to treat a variety of fibrotic disorders. Asiaticoside (ASI), as an important active ingredient, has attracted much attention in this field. However, the effect of ASI on peritoneal fibrosis (PF) is still unclear. Therefore, we evaluated the benefits of ASI for PF and mesothelial-mesenchymal transition (MMT) and revealed the underlying mechanisms. AIM OF STUDY: The objective of this investigation was to anticipate the potential molecular mechanism of ASI against peritoneal mesothelial cells (PMCs) MMT employing proteomics and network pharmacology, and to confirm it using in vivo and in vitro studies. MATERIALS AND METHODS: The mesentery of peritoneal fibrosis mice and normal mice were analyzed quantitatively for proteins that were differentially expressed using a technique tandem mass tag (TMT). Next, the core target genes of ASI against PF were screened through network pharmacology analysis, and PPI and C-P‒T networks were constructed by Cytoscape Version 3.7.2. According to the findings of a GO and KEGG enrichment analysis of differential proteins and core target genes, the signaling pathway with a high correlation degree was selected as the key signaling pathway of ASI inhibiting the PMCs MMT for further molecular docking analysis and experimental verification. RESULTS: TMT-based quantitative proteome analysis revealed the identification of 5727 proteins, of which 70 were downregulated and 178 were upregulated. Among them, the levels of STAT1, STAT2, and STAT3 in the mesentery of mice with peritoneal fibrosis were considerably lower than in the control group, indicating a role for the STAT family in the pathogenesis of peritoneal fibrosis. Then, a total of 98 ASI-PF-related targets were identified by network pharmacology analysis. JAK2 is one of the top 10 core target genes representing a potential therapeutic target. JAK/STAT signaling may represent a core pathway mediating PF effects by ASI. Molecular docking studies showed that ASI had the potential to interact favorably with target genes involved in the JAK/STAT signaling pathway, such as JAK2 and STAT3. The experimental results showed that ASI could significantly alleviate Chlorhexidine Gluconate (CG)-induced peritoneal histopathological changes and increase JAK2 and STAT3 phosphorylation levels. In TGF-ß1-stimulated HMrSV5 cells, E-cadherin expression levels were dramatically reduced whereas Vimentin, p-JAK2, α-SMA, and p-STAT3 expression levels were considerably increased. ASI inhibited the TGF-ß1-induced HMrSV5 cell MMT, decreased the activation of JAK2/STAT3 signaling, and increased the nuclear translocation of p-STAT3, which was consistent with the effect of the JAK2/STAT3 pathway inhibitor AG490. CONCLUSION: ASI can inhibit PMCs MMT and alleviate PF by regulating the JAK2/STAT3 signaling pathway.


Subject(s)
Peritoneal Fibrosis , Mice , Animals , Peritoneal Fibrosis/chemically induced , Peritoneal Fibrosis/drug therapy , Peritoneal Fibrosis/genetics , Transforming Growth Factor beta1/metabolism , Molecular Docking Simulation , Network Pharmacology , Proteomics , Cell Line , Epithelial-Mesenchymal Transition , Signal Transduction
19.
ACS Sens ; 8(3): 1318-1327, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36795762

ABSTRACT

CNT/organic probe-based chemiresistive sensors suffer from the problem of low sensitivity and poor stability due to the unstable and unfavorable CNT/organic probe interface. A new designing strategy of a one-dimensional van der Waals heterostructure was developed for ultrasensitive vapor sensing. By modifying the perylene diimide molecule at the bay region with phenoxyl and further Boc-NH- phenoxy side chains, a highly stable 1D VDW heterostructure SWCNT-probe molecule system was formed with ultrasensitivity and specificity. Interfacial recognition sites consisting of SWCNT and the probe molecule are responsible for the synergistical and excellent sensing response to MPEA molecules, which was proved by Raman, XPS, and FTIR characterizations together with dynamic simulation. Based on such a sensitive and stable VDW heterostructure system, the measured detection limit reached as low as 3.6 ppt for the synthetic drug analogue N-methylphenethylimine (MPEA) in the vapor phase, and the sensor showed almost no performance degradation even after 10 days. Furthermore, a miniaturized detector was developed for real-time monitoring of drug vapor detection.


Subject(s)
Gases , Synthetic Drugs , Catalytic Domain , Substance Abuse Detection
20.
Article in English | MEDLINE | ID: mdl-36834341

ABSTRACT

The bioavailability and mobility of phenanthrene (Phe) adsorbed by multi-walled carbon nanotubes (MWCNTs) may be substantially influenced by nonionic surfactants used both in the synthesis and dispersion of MWCNTs. The adsorption mechanisms of Phe adsorbed onto MWCNTs under the different nonionic surfactants Tween 80 (TW-80) and Triton X-100 (TX-100) in the aqueous phase were investigated in terms of changes in the MWCNTs' compositions and structures. The results showed that TW-80 and TX-100 were easily adsorbed onto MWCNTs. Phe adsorption data onto MWCNTs were better suited to the Langmuir equation than the Freundlich equation. Both TW-80 and TX-100 reduced the adsorption capacity of Phe onto MWCNTs. When TW-80 and TX-100 were added in the adsorption system, the saturated adsorption mass of Phe decreased from 35.97 mg/g to 27.10 and 29.79 mg/g, respectively, which can be attributed to the following three reasons. Firstly, the hydrophobic interactions between MWCNTs and Phe became weakened in the presence of nonionic surfactants. Secondly, the nonionic surfactants covered the adsorption sites of MWCNTs, which caused Phe adsorption to be reduced. Finally, nonionic surfactants can also promote the desorption of Phe from MWCNTs.


Subject(s)
Nanotubes, Carbon , Phenanthrenes , Nanotubes, Carbon/chemistry , Adsorption , Octoxynol , Polysorbates , Surface-Active Agents/chemistry , Phenanthrenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...