Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(21): 11866-11874, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37199445

ABSTRACT

Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes; however, the selectivity of existing methods is modest and primarily governed by the substrate's electronic properties. Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective "ene"-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground-state CT in the CT complex. Mechanistic studies on a C2-selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8-selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective radical reactions, where small molecule catalysts struggle to alter selectivity.


Subject(s)
Catalysis , Alkylation , Calixarenes/chemistry , Indoles/chemistry
2.
Chem Rev ; 123(9): 5459-5520, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37115521

ABSTRACT

Biocatalysis has revolutionized chemical synthesis, providing sustainable methods for preparing various organic molecules. In enzyme-mediated organic synthesis, most reactions involve molecules operating from their ground states. Over the past 25 years, there has been an increased interest in enzymatic processes that utilize electronically excited states accessed through photoexcitation. These photobiocatalytic processes involve a diverse array of reaction mechanisms that are complementary to one another. This comprehensive review will describe the state-of-the-art strategies in photobiocatalysis for organic synthesis until December 2022. Apart from reviewing the relevant literature, a central goal of this review is to delineate the mechanistic differences between the general strategies employed in the field. We will organize this review based on the relationship between the photochemical step and the enzymatic transformations. The review will include mechanistic studies, substrate scopes, and protein optimization strategies. By clearly defining mechanistically-distinct strategies in photobiocatalytic chemistry, we hope to illuminate future synthetic opportunities in the area.


Subject(s)
Biocatalysis , Chemistry Techniques, Synthetic
3.
Res Sq ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865242

ABSTRACT

Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. 1,2 Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes, 3-5 however, the selectivity of existing methods is modest and primarily governed by substrate electronic properties. 6,7 Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective 'ene'-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground state change transfer in the CT complex. Mechanistic studies on a C2 selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8 selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective reactions where small molecule catalysts struggle to alter selectivity.

4.
Nat Chem ; 15(2): 206-212, 2023 02.
Article in English | MEDLINE | ID: mdl-36376390

ABSTRACT

The formation of C-N bonds-of great importance to the pharmaceutical industry-can be facilitated enzymatically using nucleophilic and nitrene transfer mechanisms. However, neither natural nor engineered enzymes are known to generate and control nitrogen-centred radicals, which serve as valuable species for C-N bond formation. Here we use flavin-dependent 'ene'-reductases with an exogenous photoredox catalyst to selectively generate amidyl radicals within the protein active site. These enzymes are engineered through directed evolution to catalyse 5-exo, 6-endo, 7-endo, 8-endo, and intermolecular hydroamination reactions with high levels of enantioselectivity. Mechanistic studies suggest that radical initiation occurs via an enzyme-gated mechanism, where the protein thermodynamically activates the substrate for reduction by the photocatalyst. Molecular dynamics studies indicate that the enzymes bind substrates using non-canonical binding interactions, which may serve as a handle to further manipulate reactivity. This approach demonstrates the versatility of these enzymes for controlling the reactivity of high-energy radical intermediates and highlights the opportunity for synergistic catalyst strategies to unlock previously inaccessible enzymatic functions.


Subject(s)
Nitrogen , Stereoisomerism , Oxidation-Reduction , Catalysis
5.
Nature ; 610(7931): 302-307, 2022 10.
Article in English | MEDLINE | ID: mdl-35952713

ABSTRACT

The catalytic asymmetric construction of Csp3-Csp3 bonds remains one of the foremost challenges in organic synthesis1. Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C-C bond formation2-5. However, coupling two distinct Csp3 electrophiles with high cross-selectivity and stereoselectivity continues as an unmet challenge. Here we report a highly chemoselective and enantioselective Csp3-Csp3 XEC between alkyl halides and nitroalkanes catalysed by flavin-dependent 'ene'-reductases (EREDs). Photoexcitation of the enzyme-templated charge-transfer complex between an alkyl halide and a flavin cofactor enables the chemoselective reduction of alkyl halide over the thermodynamically favoured nitroalkane partner. The key C-C bond-forming step occurs by means of the reaction of an alkyl radical with an in situ-generated nitronate to form a nitro radical anion that collapses to form nitrite and an alkyl radical. An enzyme-controlled hydrogen atom transfer (HAT) affords high levels of enantioselectivity. This reactivity is unknown in small-molecule catalysis and highlights the potential for enzymes to use new mechanisms to address long-standing synthetic challenges.


Subject(s)
Alkanes , Chemistry Techniques, Synthetic , Oxidoreductases , Alkanes/metabolism , Biocatalysis , Flavins/metabolism , Hydrogen/metabolism , Nitrites/metabolism , Oxidoreductases/metabolism , Thermodynamics
6.
R Soc Open Sci ; 5(3): 171745, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29657778

ABSTRACT

Adoption is sometimes considered paradoxical from an evolutionary perspective because the costs spent supporting an adopted child would be better spent on rearing one's own. Kin selection theory is commonly used to solve this paradox, because the adoption of closely related kin contributes to the inclusive fitness of the adoptive parent. In this paper, we perform a novel test of kin selection theory in the context of adoption by asking whether adopted daughters-in-law, who contribute directly (i.e. genealogically) to the perpetuation of their adoptive families' lineages, experience lower mortality than daughters adopted for other purposes in historical Taiwan. We show that both classes of adopted daughter suffer lower mortality than biological daughters, but that the protective effect of adoption is stronger among daughters who were not adopted with the intention of perpetuating the family lineage. We speculate as to the possible benefits of such a pattern and emphasize the need to move beyond typological definitions of adoption to understand the specific costs and benefits involved in different forms of caring for others' children.

SELECTION OF CITATIONS
SEARCH DETAIL
...