Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123924, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38262293

ABSTRACT

Determination of antiepileptic drugs and antipsychotics in human serum is significant in individualized drug administration and therapeutic drug monitoring (TDM). In this study, we developed a rapid label-free TDM method for the antiepileptic drug carbamazepine (CBZ) and the antipsychotic clozapine (CLO) in human serum. This detection strategy is based on the combination of surface-enhanced Raman scattering (SERS) and magnetic solid-phase extraction (MSPE). Initially, Fe3O4@SiO2@MIL-101(Fe) nanocomposites were synthesized by the layer-by-layer self-assembly method and characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, ultraviolet-visible, and Fourier transform infrared analyses. Subsequently, CBZ and CLO were detected in human serum using Fe3O4@SiO2@MIL-101(Fe) as the solid-phase extraction adsorbent and Ag nanoparticles as SERS substrates. The potential of the MSPE-SERS method for the label-free TDM of CBZ and CLO was then investigated. Fe3O4@SiO2@MIL-101(Fe) prevents magnetic particle aggregation and demonstrates rapid magnetic separation capability that simplifies the pretreatment process and reduces interference from complex matrices. Its large surface area can effectively enrich targets in complex matrices, thereby improving the SERS detection sensitivity. The linearity between CBZ and CLO was excellent over the concentration range of 0.1-100 µg/mL (calculated as the intensity of the SERS characteristic peaks of CBZ and CLO at 728 cm and 1054 cm-1, respectively), with correlation coefficients (R2) of 0.9987 and 0.9957, and detection limits of 0.072 and 0.12 µg/mL, respectively. The recoveries of CBZ with CLO ranged from 94.0 % to 105.0 %, and their relative standard deviations were <6.8 %. Compared to other assays, the developed MSPE-SERS method has the advantages of simple sample pretreatment, rapid detection, and good reproducibility, which provides a novel approach for the TDM of other drugs.


Subject(s)
Antipsychotic Agents , Clozapine , Metal Nanoparticles , Metal-Organic Frameworks , Humans , Spectrum Analysis, Raman , Silicon Dioxide/chemistry , Reproducibility of Results , Drug Monitoring , Silver , Carbamazepine , Magnetic Phenomena , Solid Phase Extraction/methods , Limit of Detection , Chromatography, High Pressure Liquid/methods
2.
Sci Rep ; 13(1): 15183, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704649

ABSTRACT

Triphenyltin (TPT) is a widespread synthetic chemical used in many fields and its potential risk to organisms has been comprehensively investigated using different animal models and species. Currently, little is known about the effects of TPT exposure on microbial midgut diversity, therefore we explored these effects in the lepidopterous silkworm model using 16S rDNA sequencing. In total, 5273 and 5065 operational taxonomic units (OTUs) were identified in control and TPT-exposure group samples, ranging from 424 to 728 OTUs/sample. Alpha-diversity analyses revealed that TPT exposure induced the fluctuations of gut microbial diversity and abundance while beta-diversity analyses identified a distinct impact on major gut microbiota components. In our microbiome analyses, 23 phyla and 353 genera were recognized in the control group, while 20 phyla and 358 genera were recognized in the TPT exposure group. At the genus level, midgut microbiota were composed of several predominant bacterial genera, including Muribaculaceae, Lactobacillus, and UCG-010. In the TPT exposure group, o__Bacillales, f__Bacillaceae, and f__Caldicoprobacteraceae abundance was relatively high, while f__Oscillospiraceae, f__Fusobacteriaceae, and f__SC_I_84 abundance was relatively high in the control group. Gene function analyses in silkworm microbiota after TPT exposure showed that biosynthesis of ansamycins, fructose and mannose metabolism, glycerolipid metabolism, type II diabetes mellitus, glycolysis/gluconeogenesis, lipid metabolism, translation proteins, atrazine degradation, DNA repair and recombination proteins, nicotinate and nicotinamide metabolism were significantly increased. Collectively, our silkworm model identified gut microbial diversity risks and the adverse effects from TPT exposure, which were similar to other aquatic animals. Therefore, TPT levels in environmental samples must be monitored to prevent ecological harm.


Subject(s)
Bombyx , Diabetes Mellitus, Type 2 , Organotin Compounds , Animals , Homeostasis
3.
Environ Pollut ; 334: 122210, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37454715

ABSTRACT

Polylactic acid (PLA) is a highly common biodegradable plastic and a potential threat to health and the environment. However, limited data are available on the effects of PLA exposure in the silkworm (Bombyx mori), a model organism used in toxicity studies. In this study, silkworms with or without PLA exposure (P1: 1 mg/L, P5: 5 mg/L, P25: 25 mg/L, and P0: 0 mg/L) for the entire 5th instar period were used to investigate the impact of PLA exposure on midgut morphology, larvae growth, and survival. Mitochondrial damage was observed in the P5 and P25 groups. The weights of the P25 posterior silk gland (5th day in the 5th instar), mature larvae and pupae were all significantly lower than those of the controls (P < 0.05). Dead worm cocoon rates and larva-pupa to 5th instar larvae ratios showed a positive and negative dose-dependent manner with respect to PLA concentrations, respectively. Additionally, reactive oxygen species levels and superoxide dismutase activity of the P25 midgut were significantly higher and lower when compared with controls, respectively (P < 0.05). The molecular mechanisms underlying the effects of PLA and associated physiological responses were also investigated. In the midgut metabolome, 127 significantly different metabolites (variable importance projection >1 and P < 0.05) were identified between the P0 and P25 groups and were mainly enriched for amino acid metabolism and energy supply pathways. The 16 S rDNA data showed that PLA altered microbial richness and structural composition. Microbiota, classified into 34 genera and 63 species, were significantly altered after 25 mg/L PLA exposure (P < 0.05). Spearman's correlation results showed that Bifidobacterium catenulatum and Schaalia odontolytica played potentially vital roles during exposure, as they demonstrated stronger correlations with the significantly different metabolites than other bacterial species. In sum, PLA induced toxic effects on silkworms, especially on energy- and protein-relevant metabolism, but at high concentrations (25 mg/L). This prospective mechanistic investigation on the effects of PLA on larval toxicity provides novel insight regarding the ecological risks of biodegradable plastics in the environment.


Subject(s)
Bombyx , Microbiota , Animals , Multiomics , Prospective Studies , Polyesters/toxicity , Polyesters/metabolism , Biopolymers/metabolism , Larva
4.
Ecotoxicol Environ Saf ; 247: 114245, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36327780

ABSTRACT

Triphenyltin (TPT) is a widely used reagent in various industries and agriculture, but is also known to accumulate in natural ecosystems and animal tissues. Hence, the aim of this study was to comprehensively assess the toxicity of TPT in the silkworm Bombyx mori as a model insect. The results showed that TPT exposure for the entire 5th instar larval stage significantly reduced the weight of silkworm pupa and inhibited development of the silkworm midgut. Following exposure to 2 µg/kg of TPT for 4 days, differentially expressed genes in midgut were associated with enriched pathways involved in the metabolism of carbohydrates, lipids, and amino acids, as determined by RNA sequencing. Furthermore, the metabolic profiles of the intestinal content of silkworms exposed to 2 µg/kg of TPT for 4 days were markedly altered and differential metabolites produced by metabolism of carbohydrates, lipids, and amino acids were enriched as determined by non-targeted GC-MS/MS metabolomics. This study provides novel insights into the mechanisms underlying the toxicity of TPT and emphasizes the risks posed by such pollutants released into the environment.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Ecosystem , Tandem Mass Spectrometry , Insecta , Amino Acids , Lipids
5.
Front Psychol ; 13: 890062, 2022.
Article in English | MEDLINE | ID: mdl-36186344

ABSTRACT

The study takes an interaction perspective to examine possible interaction effects of goal orientation, psychological capital, and organizational innovation climate aimed at enhancing employees' innovation behavior. A total sample of 398 employees were selected in Chinese enterprises. The descriptive statistical analyses, multiple regression, and bootstrap approach are adopted to test the interactive effects after controlling for gender, age, years for work of employees, type of enterprises, and industry. Results indicate that learning goal orientation and proving goal orientation have a positive effect on employees' innovation behavior through psychological capital. The positive relationship between psychological capital and employees' innovation behavior is stronger when employees perceive more organizational innovation climate. Additionally, the positive effect of learning goal orientation and proving goal orientation on employees' innovation behavior is stronger in high organizational innovation climate through high-level psychological capital than in low organizational innovation climate. However, the negative effect of avoiding goal orientation on innovation behavior is not significant. Finally, implications and further research are discussed.

6.
Front Mol Biosci ; 9: 977047, 2022.
Article in English | MEDLINE | ID: mdl-36060262

ABSTRACT

Use of formula feed (FF) for silkworms for all instars, has promoted transformation and progress in traditional sericulture. However, the cocoon yield of FF silkworms has failed to reach that of silkworms fed mulberry leaves (ML). The biological mechanisms underlying this phenomenon have not been well described. This study aimed to identify metabolic mechanisms and potential biomarkers relating to the poor cocoon yield of FF silkworms. In this study, silkworms received treatments of either ML (ML group) or FF (FF group) for all instars. At the 3rd day of the 5th instar, the midgut (MG), hemolymph (HL) and posterior silk gland (PSG) were collected for the metabolome profiles detection. The remaining silkworms were fed ML or FF until cocooning for investigation. The whole cocoon yield (WCY) was significantly higher in the FF group than the ML group (p < 0.05), whereas the cocoon shell weight (CSW) and cocoon shell rate (CSR) were significantly lower in the FF group (p < 0.05). A total of 845, 867 and 831 metabolites were qualified and quantified in the MG, HL and PSG of the FF silkworms, respectively. Correspondingly, 789, 833 and 730 metabolites were quantified in above three tissues of the ML group. Further, 230, 249 and 304 significantly different metabolites (SDMs) were identified in the MG, HL and PSG between the FF and ML group, respectively. Eleven metabolic pathways enriched by the SDMs were mutual among the three tissues. Among them, cysteine and methionine metabolism, arginine biosynthesis, and arginine and proline metabolism were the top three pathways with the highest impact value in the PSG. Six biomarkers were obtained through biomarker analysis and Pearson correlation calculation. Among them, homocitrulline, glycitein, valyl-threonine, propyl gallate and 3-amino-2,3-dihydrobenzoic acid were positively correlated with WCY, but negatively correlated with CSW and CSR (p < 0.05). An opposite correlation pattern was observed between 3-dimethylallyl-4-hydroxyphenylpyruvate and the three cocoon performance traits. Overall, three key metabolic pathways and six biomarkers associated with cocoon yield were interpreted, and should provide directions for formula feed optimization in factory-raised silkworms.

7.
Sci Total Environ ; 840: 156702, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35710007

ABSTRACT

Manganese sulfide (MnS) has unique reactive abilities and can affect the fate and toxicity of contaminants in the natural environment, specifically sulfidic sediments that undergo biogeochemical changes due to natural and artificial processes. However, the effect of oxidization induced by the oxygenation of MnS on organic contaminants remains poorly understood. Herein, we revealed that the hydroxyl radical (HO·) was the dominant reactive oxidant for the rapid degradation of the assessed hydrophobic organic contaminants (including azo dye, nitroaromatic compounds, pesticide, and an endocrine disrupt chemical) during the oxygenation of MnS based on the competitive dynamic experiments, quenching experiments and electron spin resonance (ESR) methods. The removal rates of the assessed organic contaminants were significantly dependent on MnS dosage and co-solutes, including sediment humic acid, metal ions (Mn2+and Fe3+), and inorganic anions (PO43-and Cl-). HO· scavenging by sulfide and its oxidation products (e.g., elemental sulfur), rather than dissolved Mn2+, was responsible for the low utilization efficiency of HO· for the assessed contaminants. The contribution of the manganese oxide (MnO2) generated by the oxygenation of MnS to the examined degradation of contaminants could be neglected. Considered collectively, the reaction between H2O2 and MnO2 generated superoxide radicals (O2-·) which dominated the generation of HO· in an oxic MnS suspension. The results suggest that the impact of oxidization induced by the oxygenation of MnS on environmental contaminants should be of concern in both natural and engineered systems.


Subject(s)
Hydroxyl Radical , Manganese Compounds , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Oxidation-Reduction , Oxides , Sulfides
8.
Small ; 18(25): e2201209, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35607794

ABSTRACT

Emerging unfused-ring acceptors (UFAs) have been explored in pursuit of low-cost high-efficient organic solar cells (OSCs). Assembling unfused building blocks into proper frameworks are challenging for the molecular design of UFAs. The authors report herein four UFAs adopting either dithiophene cyclopentadiene (DTC) or dithieno[3,2-b:2',3'-d]pyrrole (DTP) as π-bridge units with different molecular frameworks for high-efficient as-cast OSCs. All these acceptors exhibit strong near-infrared absorption and narrow optical band gap (Eg opt  < 1.50 eV). DTC-bridged symmetric and DTP-bridged asymmetric UFAs exhibit higher planar conformation as well as suitable miscibility and homogeneous phase separation when blending with polymer donor PBDB-T to promote efficient charge transport in the blends. Their blends with PBDB-T contribute optimal PCE of 12.17% and 11.92% in as-cast OSCs, among the highest values for UFAs based as-cast devices in the literature. Experimental and theoretical simulations systematically reveal the impact of manipulating the molecular framework of UFAs on their conformation, optoelectronic, and photovoltaic performance. The results indicate the matching π-bridge units with molecular frameworks as an attractive approach to design UFAs for high-performance as-cast OSCs.

9.
Int J Biol Macromol ; 209(Pt B): 1760-1770, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35490768

ABSTRACT

Rearing silkworms (Bombyx mori) using formula feed has revolutionized traditional mulberry feed strategies. However, low silk production efficiencies persist and have caused bottlenecks, hindering the industrial application of formula feed sericulture. Here, we investigated the effects of formula feed amino acid composition on silk yields. We showed that imbalanced amino acids reduced DNA proliferation, decreased Fib-H, Fib-L, and P25 gene expression, and caused mild autophagy in the posterior silk gland, reducing cocoon shell weight and ratio. When compared with mulberry leaves, Gly, Ala, Ser, and Tyr percentages of total amino acids in formula feed were decreased by 5.26%, while Glu and Arg percentages increased by 9.56%. These changes increased uric acid and several amino acids levels in the hemolymph of silkworms on formula feed. Further analyses showed that Gly and Thr (important synthetic Gly sources) increased silk yields, with Gly increasing amino acid conversion efficiencies to silk protein, and reducing urea levels in hemolymph. Also, Gly promoted endomitotic DNA synthesis in silk gland cells via phosphoinositide 3-kinase (PI3K)/Akt/target of rapamycin (TOR) signaling. In this study, we highlighted the important role of Gly in regulating silk yields in silkworms.


Subject(s)
Bombyx , Fabaceae , Morus , Amino Acids/metabolism , Animals , Bombyx/chemistry , Fabaceae/metabolism , Glycine/metabolism , Hemolymph/metabolism , Insect Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Silk/metabolism
10.
Mater Horiz ; 8(3): 1008-1016, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-34821331

ABSTRACT

Side-chain engineering on nonfullerene acceptors (NFAs) is crucial for modulating their solubility and crystallinity as well as packing behaviours in active layers to pursue high-performance organic solar cells (OSCs). High weight ratios of side chains are generally used by NFAs for the desired device efficiencies. Side-chain economy has seldom been discussed despite increased cost and difficulties in synthesis when optimizing the molecular design. Herein, we introduce 7H-dibenzo[c,g]carbazole (DCB) as an electron-donating core to design unfused-ring acceptors (UFAs) with a dramatically low weight ratio of side chains. DCB-4F has thus been designed and compared with the carbazole cored analogue (CB-4F). The unique conformation of the DCB core endows DCB-4F with higher solubility (8.2 mg mL-1 in chloroform) compared to CB-4F (2.2 mg mL-1) when using the same side chains. Featuring a lowest unoccupied molecular orbital (LUMO) level of -3.86 eV and an optical bandgap of 1.55 eV, the DCB-4F film exhibits an absorption profile (maximum 667 nm) complementary to polymer donor PM6. The PM6:DCB-4F as-cast OSCs deliver a power conversion efficiency (PCE) of 9.56% with a high open-circuit voltage (VOC) of 1.00 V. By adding 10 wt% PC71BM into the casting solutions, a greatly improved PCE of 11.17% is readily achieved, which is one of the highest PCEs for as-cast single-junction UFA-based devices. The PM6:DCB-4F based blends show homogeneous nano-fiberous morphology and higher hydrophobicity. The design of conformation-tuned NFAs using sterically hindered DCB-like cores is promising to achieve highly efficient as-cast OSCs.

11.
Chemosphere ; 284: 131332, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34198067

ABSTRACT

Although various activated peroxymonosulfate (PMS) processes have been applied widely for the destruction of recalcitrant organics due to its high generation potential of various electrophiles reactive oxygen species (e.g., sulfate and hydroxyl radicals and singlet oxygen), non-radical-based PMS reactions with pollutants are poorly understood. Especially, relatively little information exists on the reactivity of PMS towards organic ester compounds such an organophosphorus pesticides (OPPs). Herein, we systematically studied the unactivated PMS-induced transformation of methyl parathion, a stubborn and toxic OPP. Specifically, direct reaction rather than electrophile radical-based oxidation was responsible for the rapid degradation of methyl parathion. The contribution of the produced singlet oxygen (1O2) from the self-decomposition of PMS to methyl parathion degradation can be neglected. The degradation rate constant (kobs) was strongly dependent on PMS loading and solution pH. The implication of the PMS reaction with methyl parathion for environment treatment was further evaluated by investigating the effects of common water matrices such as sediment humic acids, Cl-, and natural water. The identified metabolic products revealed that exposure to PMS resulted in hydrolysis and oxidation to methyl parathion. Further study demonstrated that PMS was also capable of effectively oxidizing other typical OPPs without explicit activation. This study provides novel insights into the reaction of methyl parathion with PMS, which indicate feasibility for the decontamination of OPP-contaminated environments.


Subject(s)
Methyl Parathion , Pesticides , Water Pollutants, Chemical , Kinetics , Organophosphorus Compounds , Oxidation-Reduction , Peroxides , Water Pollutants, Chemical/analysis
12.
Phys Chem Chem Phys ; 22(15): 7864-7874, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32227033

ABSTRACT

Non-fullerene acceptors, especially acceptor-donor-acceptor structured fused-ring electron acceptors (FREAs), have attracted widespread attention in organic solar cells because of their versatile molecular design in fine-tuning light absorption and energy levels. We report the accuracy of Time-Dependent Density Functional Theory (TD-DFT) for FREAs by comparing their theoretically predicted vertical absorption wavelength (λver-abso) with the experimental maximum absorption (λmax). The λver-abso values of 50 molecules obtained from major types of FREAs have been investigated using TD-DFT by considering the solvent effects. The values of λver-abso predicted with a pure density functional (PBE), global hybrids (B3LYP and PBE0) and range-separated schemes (CAM-B3LYP and LC-ωPBE) follow the exact exchange percentage included at an intermediate inter-electronic distance. Global hybrids outperform all other schemes. The mean absolute error provided is 22 nm by PBE0 and 38 nm by B3LYP for the whole set of molecules. The maximum deviation of 92 nm provided by B3LYP and 69 nm provided by PBE0 confirms that PBE0 is more appropriate for predicting the absorption wavelengths when designing new FREAs. By applying linear regression analysis to obtain the calibration curve, we found that the range-separated methods provide an equal or even more consistent description of FREA excited states. For the whole set of molecules, linearly corrected data yield an average error of 25 and 27 nm for CAM-B3LYP and LC-ωPBE, respectively. Consequently, when a statistical analysis technique is applicable for a certain series of FREAs, a theoretical method permits a chemically comprehensive and empirically good explanation of UV/Vis spectra for newly-designed FREAs.

15.
Hemoglobin ; 41(4-6): 243-247, 2017.
Article in English | MEDLINE | ID: mdl-29124980

ABSTRACT

α-Thalassemia (α-thal) is a very common single gene hereditary disease caused by large deletions or point mutations of the α-globin gene cluster in tropical and subtropical regions of the world. Here, we report for the first time, a novel large α-thal deletion in a Chinese family from Jiangsu Province, People's Republic of China (PRC), which removes almost the entire α2 and α1 genes from the α-globin gene cluster. Thus, it was named the Jiangsu deletion (- -JS) on the α-globin gene cluster causing α0-thal. Heterozygotes for this deletion showed an α-thal trait phenotype with reduced mean corpuscular volume (MCV) and mean corpuscular hemoglobin (Hb) (MCH) levels. The sequencing results showed that a 2538 bp deletion (NG_000006.1: g.35801_38338) existed in this novel genotype on the basis of -α4.2 (leftward), indicating a deletion of about 6.8 kb from the α-globin cluster. In addition, a 29 bp sequence was inserted into the deletion during the recombination events that led to this deletion. Through pedigree analysis, we knew that the proband inherited the novel allele from his mother.


Subject(s)
Base Sequence , Prenatal Diagnosis , Sequence Deletion , alpha-Globins/genetics , alpha-Thalassemia , Female , Humans , Male , Pregnancy , alpha-Thalassemia/diagnosis , alpha-Thalassemia/genetics
16.
Biol Reprod ; 87(6): 144, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23100618

ABSTRACT

The domesticated silkworm Bombyx mori L. has important roles in basic biological research and applied science. To explore the practical use of transgenic technology in agricultural silkworm varieties, we fused the neomycin-resistance gene (Neo(R)) and the green fluorescent protein gene (gfp) into the piggyBac-based transposon vector and transduced it into silkworms by sperm-mediated gene transfer (SMGT). Fluorescence observation indicated the positive rate of G0 egg-batches is 72.7%. After screening against the antibiotic G418, development of individual larvae in the same brood showed significant size differences. PCR detection indicated the existence of gfp and Neo(R) and confirmed the positive rate of transgenesis as 0.47%. Southern blot analysis confirmed the presence of the exogenous genes in the genome of G7 larvae. These results show that our strategy is practical and markedly improves the efficiency of SMGT.


Subject(s)
Animals, Genetically Modified/genetics , Bombyx/genetics , Gene Transfer Techniques , Genes, Insect , Spermatozoa/metabolism , Transformation, Genetic , Animal Husbandry , Animals , Animals, Genetically Modified/growth & development , Animals, Genetically Modified/metabolism , Anti-Bacterial Agents/pharmacology , Bombyx/drug effects , Bombyx/growth & development , Bombyx/metabolism , DNA Transposable Elements , Drug Resistance , Female , Gentamicins/pharmacology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Larva/drug effects , Larva/genetics , Larva/growth & development , Larva/metabolism , Male , Neomycin/pharmacology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/metabolism , Recombinant Fusion Proteins/metabolism
17.
Genome Biol ; 8(10): R218, 2007.
Article in English | MEDLINE | ID: mdl-17927820

ABSTRACT

BACKGROUND: Xanthomonas campestris pathovar campestris (Xcc) is the causal agent of black rot disease of crucifers worldwide. The molecular genetic diversity and host specificity of Xcc are poorly understood. RESULTS: We constructed a microarray based on the complete genome sequence of Xcc strain 8004 and investigated the genetic diversity and host specificity of Xcc by array-based comparative genome hybridization analyses of 18 virulent strains. The results demonstrate that a genetic core comprising 3,405 of the 4,186 coding sequences (CDSs) spotted on the array are conserved and a flexible gene pool with 730 CDSs is absent/highly divergent (AHD). The results also revealed that 258 of the 304 proved/presumed pathogenicity genes are conserved and 46 are AHD. The conserved pathogenicity genes include mainly the genes involved in type I, II and III secretion systems, the quorum sensing system, extracellular enzymes and polysaccharide production, as well as many other proved pathogenicity genes, while the AHD CDSs contain the genes encoding type IV secretion system (T4SS) and type III-effectors. A Xcc T4SS-deletion mutant displayed the same virulence as wild type. Furthermore, three avirulence genes (avrXccC, avrXccE1 and avrBs1) were identified. avrXccC and avrXccE1 conferred avirulence on the hosts mustard cultivar Guangtou and Chinese cabbage cultivar Zhongbai-83, respectively, and avrBs1 conferred hypersensitive response on the nonhost pepper ECW10R. CONCLUSION: About 80% of the Xcc CDSs, including 258 proved/presumed pathogenicity genes, is conserved in different strains. Xcc T4SS is not involved in pathogenicity. An efficient strategy to identify avr genes determining host specificity from the AHD genes was developed.


Subject(s)
Brassicaceae/microbiology , Genetic Variation , Xanthomonas campestris/genetics , China , Computational Biology , Genome Components , Genomics/methods , Microarray Analysis , Nucleic Acid Hybridization , Sensitivity and Specificity , Species Specificity , Virulence/genetics , Xanthomonas campestris/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...