Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Acta Trop ; 257: 107320, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002739

ABSTRACT

PURPOSE: The polarization of macrophages with the resulting inflammatory response play a crucial part in tissue and organ damage due to inflammatory. Study has proved Lian Hua Qing Wen capsules (LHQW) can reduce activation of inflammatory response and damage of tissue derived from the inflammatory reactions. However, the mechanism of LHQW regulates the macrophage-induced inflammatory response is unclear. Therefore, we investigated the mechanism of LHQW regulated the inflammatory response of M1 macrophages by cellular experiments and computer simulations. METHODS: This study has analysed the targets and mechanisms of macrophage regulating inflammatory response at gene and protein levels through bioinformatics. The monomeric components of LHQW were analyzed by High Performance Liquid Chromatography (HPLC). We established the in vitro cell model by M1 macrophages (Induction of THP-1 cells into M1 macrophages). RT-qPCR and immunofluorescence were used to detect changes in gene and protein levels of key targets after LHQW treatment. Computer simulations were utilized to verify the binding stability of monomeric components and protein targets. RESULTS: Macrophages had 140,690 gene targets, inflammatory response had 12,192 gene targets, intersection gene targets were 11,772. Key monomeric components (including: Pinocembrin, Fargesone-A, Nodakenin and Bowdichione) of LHQW were screened by HPLC. The results of cellular experiments indicated that LHQW could significantly reduce the mRNA expression of CCR5, CSF2, IFNG and TNF, thereby alleviating the inflammatory response caused by M1 macrophage. The computer simulations further validated the binding stability and conformation of key monomeric components and key protein targets, and IFNG/Nodakenin was able to form the most stable binding conformation for its action. CONCLUSION: In this study, the mechanism of LHQW inhibits the polarization of macrophages and the resulting inflammatory response was investigated by computer simulations and cellular experiments. We found that LHQW may not only reduce cell damage and death by acting on TNF and CCR5, but also inhibit the immune recognition process and inflammatory response by regulating CSF2 and IFNG to prevent polarization of macrophages. Therefore, these results suggested that LHQW may act through multiple targets to inhibit the polarization of macrophages and the resulting inflammatory response.


Subject(s)
Computer Simulation , Drugs, Chinese Herbal , Macrophages , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Inflammation , Anti-Inflammatory Agents/pharmacology , THP-1 Cells , Computational Biology , Chromatography, High Pressure Liquid
2.
Neurochem Int ; 176: 105746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641027

ABSTRACT

PURPOSE: Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation. METHODS: Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein. RESULTS: Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level. CONCLUSION: We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.


Subject(s)
Cell Survival , Computer Simulation , Epilepsy , Sirolimus , TOR Serine-Threonine Kinases , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Animals , Phosphorylation/drug effects , Mice , Cell Survival/drug effects , Cell Survival/physiology , Cell Line
3.
Ibrain ; 9(3): 326-339, 2023.
Article in English | MEDLINE | ID: mdl-37786754

ABSTRACT

Cerebral ischemia is a serious cerebrovascular disease with the characteristics of high morbidity, disability, and mortality. Currently, stem cell therapy has been extensively applied to a wide range of diseases, including neurological disorders, autoimmune deficits, and other diseases. Transplantation therapy with neural stem cells (NSCs) is a very promising treatment method, which not only has anti-inflammatory, antiapoptotic, promoting angiogenesis, and neurogenesis effects, but also can improve some side effects related to thrombolytic therapy. NSCs treatment could exert protective effects in alleviating cerebral ischemia-induced brain damage and neurological dysfunctions. However, the different injection routes and doses of NSCs determine diverse therapeutic efficacy. This review mainly summarizes the various injection methods and injection effects of NSCs in cerebral ischemia, as well as proposes the existing problems and prospects of NSCs transplantation.

4.
Front Cell Infect Microbiol ; 12: 1044770, 2022.
Article in English | MEDLINE | ID: mdl-36506032

ABSTRACT

Purpose: 2019 Coronavirus disease (COVID-19) is endangering health of populations worldwide. Latest research has proved that Lianhua Qingwen granules (LHQW) can reduce tissue damage caused by inflammatory reactions and relieve patients' clinical symptoms. However, the mechanism of LHQW treats COVID-19 is currently lacking. Therefore, we employed computer simulations to investigate the mechanism of LHQW treats COVID-19 by modulating inflammatory response. Methods: We employed bioinformatics to screen active ingredients in LHQW and intersection gene targets. PPI, GO and KEGG was used to analyze relationship of intersection gene targets. Molecular dynamics simulations validated the binding stability of active ingredients and target proteins. Binding free energy, radius of gyration and the solvent accessible surface area were analyzed by supercomputer platform. Results: COVID-19 had 4628 gene targets, LHQW had 1409 gene targets, intersection gene targets were 415. Bioinformatics analysis showed that intersection targets were closely related to inflammation and immunomodulatory. Molecular docking suggested that active ingredients (including: licopyranocoumarin, Glycyrol and 3-3-Oxopropanoic acid) in LHQW played a role in treating COVID-19 by acting on CSF2, CXCL8, CCR5, NLRP3, IFNG and TNF. Molecular dynamics was used to prove the binding stability of active ingredients and protein targets. Conclusion: The mechanism of active ingredients in LHQW treats COVID-19 was investigated by computer simulations. We found that active ingredients in LHQW not only reduce cell damage and tissue destruction by inhibiting the inflammatory response through CSF2, CXCL8, CCR5 and IFNG, but also regulate cell survival and growth through NLRP3 and TNF thereby reducing apoptosis.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Cell Survival , Computational Biology
5.
Front Microbiol ; 13: 1013911, 2022.
Article in English | MEDLINE | ID: mdl-36329841

ABSTRACT

Purpose: 2019 Coronavirus disease (COVID-19) has caused millions of confirmed cases and deaths worldwide. TMPRSS2-mediated hydrolysis and maturation of spike protein is essential for SARS-CoV-2 infection in vivo. The latest research found that a TMPRSS2 inhibitor called N-0385 could effectively prevent the infection of the SARS-CoV-2 and its variants. However, it is not clear about the mechanism of N-0385 treatment COVID-19. Therefore, this study used computer simulations to investigate the mechanism of N-0385 treatment COVID-19 by impeding SARS-CoV-2 infection. Methods: The GeneCards database was used to search disease gene targets, core targets were analyzed by PPI, GO and KEGG. Molecular docking and molecular dynamics were used to validate and analyze the binding stability of small molecule N-0385 to target proteins. The supercomputer platform was used to simulate and analyze the number of hydrogen bonds, binding free energy, stability of protein targets at the residue level, radius of gyration and solvent accessible surface area. Results: There were 4,600 COVID-19 gene targets from GeneCards database. PPI, GO and KEGG analysis indicated that signaling pathways of immune response and inflammation played crucial roles in COVID-19. Molecular docking showed that N-0385 could block SARS-CoV-2 infection and treat COVID-19 by acting on ACE2, TMPRSS2 and NLRP3. Molecular dynamics was used to demonstrate that the small molecule N-0385 could form very stable bindings with TMPRSS2 and TLR7. Conclusion: The mechanism of N-0385 treatment COVID-19 was investigated by molecular docking and molecular dynamics simulation. We speculated that N-0385 may not only inhibit SARS-CoV-2 invasion directly by acting on TMPRSS2, ACE2 and DPP4, but also inhibit the immune recognition process and inflammatory response by regulating TLR7, NLRP3 and IL-10 to prevent SARS-CoV-2 invasion. Therefore, these results suggested that N-0385 may act through multiple targets to reduce SARS-CoV-2 infection and damage caused by inflammatory responses.

6.
Steroids ; 188: 109131, 2022 12.
Article in English | MEDLINE | ID: mdl-36273543

ABSTRACT

PURPOSE: Spinal cord injury can lead to incomplete or complete loss of voluntary movement and sensory function, leading to serious complications. Numerous studies have shown that progesterone exhibits strong therapeutic potential for spinal cord injury. However, the mechanism by which progesterone treats spinal cord injury remains unclear. Therefore, this article explores the mechanism of progesterone in the treatment of spinal cord injury by means of molecular docking and molecular dynamics simulation. METHODS: We used bioinformatics to screen active pharmaceutical ingredients and potential targets, and molecular docking and molecular dynamics were used to validate and analysis by the supercomputer platform. RESULTS: Progesterone had 3606 gene targets, spinal cord injury had 6560 gene targets, the intersection gene targets were 2355. GO and KEGG analysis showed that the abundant pathways involved multiple pathways related to cell metabolism and inflammation. Molecular docking showed that progesterone played a role in treating spinal cord injury by acting on BDNF, AR, NGF and TNF. Molecular dynamics was used to prove and analyzed the binding stability of active ingredients and protein targets, and AR/Progesterone combination has the strongest binding energy. CONCLUSION: Progesterone promotes recovery from spinal cord injury by promoting axonal regeneration, remyelination, neuronal survival and reducing inflammation.


Subject(s)
Progesterone , Spinal Cord Injuries , Humans , Progesterone/pharmacology , Progesterone/therapeutic use , Progesterone/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Pharmaceutical Preparations , Inflammation/drug therapy
7.
Front Pharmacol ; 13: 1003310, 2022.
Article in English | MEDLINE | ID: mdl-36120307

ABSTRACT

Purpose: The rapid worldwide spread of Corona Virus Disease 2019 (COVID-19) has become not only a global challenge, but also a lack of effective clinical treatments. Studies have shown that licorice can significantly improve clinical symptoms such as fever, dry cough and shortness of breath in COVID-19 patients with no significant adverse effects. However, there is still a lack of in-depth analysis of the specific active ingredients of licorice in the treatment of COVID-19 and its mechanism of action. Therefore, we used molecular docking and molecular dynamics to explore the mechanism of action of licorice in the treatment of COVID-19. Methods: We used bioinformatics to screen active pharmaceutical ingredients and potential targets, the disease-core gene target-drug network was established and molecular docking was used for verification. Molecular dynamics simulations were carried out to verify that active ingredients were stably combined with protein targets. The supercomputer platform was used to measure and analyze stability of protein targets at the residue level, solvent accessible surface area, number of hydrogen bonds, radius of gyration and binding free energy. Results: Licorice had 255 gene targets, COVID-19 had 4,628 gene targets, the intersection gene targets were 101. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene ontology (GO) analysis showed that licorice played an important role mainly through the signaling pathways of inflammatory factors and oxidative stress. Molecular docking showed that Glycyrol, Phaseol and Glyasperin F in licorice may playe a role in treating COVID-19 by acting on STAT3, IL2RA, MMP1, and CXCL8. Molecular dynamics were used to demonstrate and analyze the binding stability of active ingredients to protein targets. Conclusion: This study found that Phaseol in licorice may reduce inflammatory cell activation and inflammatory response by inhibiting the activation of CXCL8 and IL2RA; Glycyrol may regulate cell proliferation and survival by acting on STAT3. Glyasperin F may regulate cell growth by inhibiting the activation of MMP1, thus reducing tissue damage and cell death caused by excessive inflammatory response and promoting the growth of new tissues. Therefore, licorice is proposed as an effective candidate for the treatment of COVID-19 through STAT3, IL2RA, MMP1, and CXCL8.

8.
Front Physiol ; 13: 990469, 2022.
Article in English | MEDLINE | ID: mdl-36105284

ABSTRACT

Purpose: Dapansutrile is an orally active ß-sulfonyl nitrile compound that selectively inhibits the NLRP3 inflammasome. Clinical studies have shown that dapansutrile is active in vivo and limits the severity of endotoxin-induced inflammation and joint arthritis. However, there is currently a lack of more in-depth research on the effect of dapansutrile on protein targets such as NLRP3 in gouty arthritis. Therefore, we used molecular docking and molecular dynamics to explore the mechanism of dapansutrile on NLRP3 and other related protein targets. Methods: We use bioinformatics to screen active pharmaceutical ingredients and potential disease targets. The disease-core gene target-drug network was established and molecular docking was used for verification. Molecular dynamics simulations were utilized to verify and analyze the binding stability of small molecule drugs to target proteins. The supercomputer platform was used to measure and analyze the binding free energy, the number of hydrogen bonds, the stability of the protein target at the residue level, the radius of gyration and the solvent accessible surface area. Results: The protein interaction network screened out the core protein targets (such as: NLRP3, TNF, IL1B) of gouty arthritis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that gouty arthritis mainly played a vital role by the signaling pathways of inflammation and immune response. Molecular docking showed that dapansutrile play a role in treating gouty arthritis by acting on the related protein targets such as NLRP3, IL1B, IL6, etc. Molecular dynamics was used to prove and analyze the binding stability of active ingredients and protein targets, the simulation results found that dapansutrile forms a very stable complex with IL1B. Conclusion: We used bioinformatics analysis and computer simulation system to comprehensively explore the mechanism of dapansutrile acting on NLRP3 and other protein targets in gouty arthritis. This study found that dapansutrile may not only directly inhibit NLRP3 to reduce the inflammatory response and pyroptosis, but also hinder the chemotaxis and activation of inflammatory cells by regulating IL1B, IL6, IL17A, IL18, MMP3, CXCL8, and TNF. Therefore, dapansutrile treats gouty arthritis by attenuating inflammatory response, inflammatory cell chemotaxis and extracellular matrix degradation by acting on multiple targets.

9.
Mediators Inflamm ; 2022: 6285099, 2022.
Article in English | MEDLINE | ID: mdl-39262872

ABSTRACT

Purpose: Inflammation and apoptosis after spinal cord contusion (SCC) are important causes of irreversible spinal cord injury. Interleukin-1ß (IL-1ß) is a key inflammatory factor that promotes the aggravation of spinal cord contusion. However, the specific role and regulatory mechanism of IL-1ß in spinal cord contusion is still unclear. Therefore, this study applied bioinformatics to analyze and mine potential gene targets interlinked with IL-1ß, animal experiments and lentiviral interference technology were used to explore whether IL-1ß affected the recovery of motor function in spinal cord contusion by interfering with PI3K/AKT1 signaling pathway. Method: This study used bioinformatics to screen and analyze gene targets related to IL-1ß. The rat SCC animal model was established by the Allen method, and the Basso Beattie Bresnahan (BBB) score was used to evaluate the motor function of the spinal cord-injured rats. Immunohistochemistry and immunofluorescence were used to localize the expression of IL-1ß and AKT1 proteins in spinal cord tissue. Quantitative polymerase chain reaction and Western blot were used to detect the gene and protein expressions of IL-1ß, PI3K, and AKT1. RNAi technology was used to construct lentivirus to inhibit the expression of IL-1ß, lentiviral interference with IL-1ß was used to investigate the effect of IL-1ß and AKT1 on the function of spinal cord contusion and the relationship among IL-1ß, AKT1, and downstream signaling pathways. Results: Bioinformatics analysis suggested a close relationship between IL-1ß and AKT1. Animal experiments have confirmed that IL-1ß is closely related to the functional recovery of spinal cord contusion. Firstly, from the phenomenological level, the BBB score decreased after SCC, IL-1ß and AKT1 were located in the cytoplasm of neurons in the anterior horn of the spinal cord, and the expression levels of IL-1ß gene and protein in the experimental group were higher than those in the sham operation group. At the same time, the expression of AKT1 gene decreased, the results suggested that the increase of IL-1ß affected the functional recovery of spinal cord contusion. Secondly, from the functional level, after inhibiting the expression of IL-1ß with a lentivirus-mediated method, the BBB score was significantly increased, and the motor function of the spinal cord was improved. Thirdly, from the mechanistic level, bioinformatics analysis revealed the relationship between IL-1ß and AKT1. In addition, the experiment further verified that in the PI3K/AKT1 signaling pathway, inhibition of IL-1ß expression upregulated AKT1 gene expression, but PI3K expression was unchanged. Conclusion: Inhibition of IL-1ß promotes recovery of motor function after spinal cord injury in rats through upregulation of AKT1 expression in the PI3K/AKT1 signaling pathway. Bioinformatics analysis suggested that IL-1ß may affect apoptosis and regeneration by inhibiting the expression of AKT1 in the PI3K/AKT1 signaling pathway to regulate the downstream FOXO, mTOR, and GSK3 signaling pathways; thereby hindering the recovery of motor function in rats after spinal cord contusion. It provided a new perspective for clinical treatment of spinal cord contusion in the future.

10.
BMC Genomics ; 21(1): 575, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32831017

ABSTRACT

BACKGROUND: Cotton (Gossypium spp.) is the most important world-wide fiber crop but salt stress limits cotton production in coastal and other areas. Growth regulation factors (GRFs) play regulatory roles in response to salt stress, but their roles have not been studied in cotton under salt stress. RESULTS: We identified 19 GRF genes in G. raimondii, 18 in G. arboreum, 34 in G. hirsutum and 45 in G. barbadense, respectively. These GRF genes were phylogenetically analyzed leading to the recognition of seven GRF clades. GRF genes from diploid cottons (G. raimondii and G. arboreum) were largely retained in allopolyploid cotton, with subsequent gene expansion in G. barbadense relative to G. hirsutum. Most G. hirsutum GRF (GhGRF) genes are preferentially expressed in young and growing tissues. To explore their possible role in salt stress, we used qRT-PCR to study expression responses to NaCl treatment, showing that five GhGRF genes were down-regulated in leaves. RNA-seq experiments showed that seven GhGRF genes exhibited decreased expression in leaves under NaCl treatment, three of which (GhGRF3, GhGRF4, and GhGRF16) were identified by both RNA-seq and qRT-PCR. We also identified six and three GRF genes that exhibit decreased expression under salt stress in G. arboreum and G. barbadense, respectively. Consistent with its lack of leaf withering or yellowing under the salt treatment conditions, G. arboreum had better salt tolerance than G. hirsutum and G. barbadense. Our results suggest that GRF genes are involved in salt stress responses in Gossypium. CONCLUSION: In summary, we identified candidate GRF genes that were involved in salt stress responses in cotton.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Gossypium/genetics , Gossypium/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress
SELECTION OF CITATIONS
SEARCH DETAIL