Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Sci Total Environ ; 945: 174093, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906307

ABSTRACT

Black carbon (BC) and brown carbon (BrC) over the high-altitude Tibetan Plateau (TP) can significantly influence regional and global climate change as well as glacial melting. However, obtaining plateau-scale in situ observations is challenging due to its high altitude. By integrating reanalysis data with on-site measurements, the spatial distribution of BC and BrC can be accurately estimated using the random forest algorithm (RF). In our study, the on-site observations of BC and BrC were successively conducted at four sites from 2018 to 2021. Ground-level BC and BrC concentrations were then obtained at a spatial resolution of 0.25° × 0.25° for three periods (including Periods-1980, 2000, and 2020) using RF and multi-source data. The highest annual concentrations of BC (1363.9 ± 338.7 ng/m3) and BrC (372.1 ± 96.2 ng/m3) were observed during Period-2000. BC contributed a dominant proportion of carbonaceous aerosol, with concentrations 3-4 times higher than those of BrC across the three periods. The ratios of BrC to BC decreased from Period-1980 to Period-2020, indicating the increasing importance of BC over the TP. Spatial distributions of plateau-scale BC and BrC concentrations showed heightened levels in the southeastern TP, particularly during Period-2000. These findings significantly enhance our understanding of the spatio-temporal distribution of light-absorbing carbonaceous aerosol over the TP.

2.
Environ Sci Technol ; 58(25): 11118-11127, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38864774

ABSTRACT

Intermediate volatility organic compounds (IVOCs) are important precursors to secondary organic aerosols (SOAs), but they are often neglected in studies concerning SOA formation. This study addresses the significant issue of IVOCs emissions in the Qinghai-Tibetan plateau (QTP), where solid fuels are extensively used under incomplete combustion conditions for residential heating and cooking. Our field measurement data revealed an emission factor of the total IVOCs (EFIVOCs) ranging from 1.56 ± 0.03 to 9.97 ± 3.22 g/kg from various combustion scenarios in QTP. The markedly higher EFIVOCs in QTP than in plain regions can be attributed to oxygen-deficient conditions. IVOCs were dominated by gaseous phase emissions, and the primary contributors of gaseous and particulate phase IVOCs are the unresolved complex mixture and alkanes, respectively. Total IVOCs emissions during the heating and nonheating seasons in QTP were estimated to be 31.7 ± 13.8 and 6.87 ± 0.45 Gg, respectively. The estimated SOA production resulting from combined emissions of IVOCs and VOCs is nearly five times higher than that derived from VOCs alone. Results from this study emphasized the pivotal role of IVOCs emissions in air pollution and provided a foundation for compiling emission inventories related to solid fuel combustion and developing pollution prevention strategies.


Subject(s)
Aerosols , Air Pollutants , Coal , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollutants/analysis , China , Animals , Tibet , Environmental Monitoring
3.
Environ Sci Technol ; 57(45): 17598-17609, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37906717

ABSTRACT

Activating surface lattice oxygen (Olatt) through the modulation of metal-oxygen bond strength has proven to be an effective route for facilitating the catalytic degradation of volatile organic compounds (VOCs). Although this strategy has been implemented via the construction of the TM1-O-TM2 (TM represents a transition metal) structure in various reactions, the underlying principle requires exploration when using different TMs. Herein, the Cu2+-O-Fe3+ structure was created by developing CuO-Fe3O4 composites with enhanced interfacial effect, which exhibited superior catalytic activity to their counterparts, with T90 (the temperature of toluene conversion reaching 90%) decreasing by approximately 50 °C. Structural analyses and theoretical calculations demonstrated that the active Cu2+-O-Fe3+ sites at the CuO-Fe3O4 interface improved low-temperature reducibility and oxygen species activity. Particularly, X-ray absorption fine structure spectroscopy revealed the contraction and expansion of Cu-O and Fe-O bonds, respectively, which were responsible for the activation of the surface Olatt. A mechanistic study revealed that toluene can be oxidized by rapid dehydrogenation of methyl assisted by the highly active surface Olatt and subsequently undergo ring-opening and deep mineralization into CO2 following the Mars-van Krevelen mechanism. This study provided a novel strategy to explore interface-enhanced TM catalysts for efficient surface Olatt activation and VOCs abatement.


Subject(s)
Copper , Oxygen , Toluene
4.
Environ Sci Technol ; 57(38): 14280-14288, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37706300

ABSTRACT

Methoxyphenols and nitroaromatic compounds (NACs) have strong atmospheric radiative forcing effects and adverse effects on human health. They are emitted from the incomplete combustion of solid fuels and are secondarily formed through photochemical reactions. Here, an on-site study was conducted to determine the primary emission and secondary formation of particulate phase products from a variety of solid fuels through a potential aerosol mass-oxidation flow reactor. Emission factors for total quantified methoxyphenols and NACs (i.e., EF∑Methoxyphenols and EF∑NACs) varied by 2 orders of magnitude among different fuels, which were greatly influenced by volatile matter, incomplete combustibility, flame intensity, and combustion temperature. Guaiacol and 4-nitro-2-vinylphenol were used as tracers for primary organic aerosol due to the low aged-to-fresh ratios (0.21-0.97), while 4-methyl-guaiacol, 4-ethyl-guaiacol, eugenol, 4-methyl-syringol, isoeugenol, acetovanillone, syringaldehyde, homovanillin acid, vanillin acid, and syringic acid were identified as secondary organic aerosol (SOA) (aged-to-fresh ratios between 1.90 and 4.20). During simulated aging, the -CHO group reacted with the hydroxyl radical (•OH) to form the -COOH group, but there was no correlation between syringol and 4-nitrosyringol, implying that •OH is the main reactant rather than the nitriate radical (•NO3) in the atmospheric aging processes of methoxyphenols. Aging caused substantially different emission profiles due to variable photochemical reaction properties. The fresh EFs for guaiacol emitted from the biomass burning ranged from 3.80 ± 0.44 to 26.2 ± 5.40 mg·kg-1, which were much higher than those in coal combustions (of 0.03 ± 0.01 to 1.42 ± 0.28 mg·kg-1). However, the aged EFs (EFaged) for guaiacol was 1.02 ± 0.06 to 1.61 ± 0.11 mg·kg-1 in most biomass combustions, which were comparable with those of the bituminous chunk (1.20 ± 0.16 mg·kg-1). Therefore, guaiacol, a traditional biomass marker, is not an ideal tracer for aged PM2.5 emitted from biomass burning. Indeed, the syringol/guaiacol and syringol/4-nitrosyringol ratios were found to be more suitable and efficient to be used in source characterization.


Subject(s)
Aging , Pyrogallol , Humans , Aged , Biomass , Coal
5.
Sci Total Environ ; 874: 162516, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36868269

ABSTRACT

The use of indoor air purifier (IAP) has received growing attention as a mitigation strategy for reducing indoor air pollution, but the evidence on their cardiovascular benefits is unclear. This study aims to evaluate whether the use of IAP can reduce the adverse effects of indoor particulate matter (PM) on cardiovascular health among young healthy population. A randomized, double-blind, cross-over, IAP intervention of 38 college students was conducted. The participants were assigned into two groups to receive the true and sham IAPs for 36 h in random order. Systolic and diastolic blood pressure (SBP; DBP), blood oxygen saturation (SpO2), heart rate variability (HRV) and indoor size-fractioned particulate matter (PM) were real-time monitored throughout the intervention. We found that IAP could reduce indoor PM by 41.7-50.5 %. Using IAP was significantly associated with a reduction of 2.96 mmHg (95 % CI: -5.71, -0.20) in SBP. Increased PM was significantly associated with increased SBP (e.g., 2.17 mmHg [0.53, 3.81], 1.73 mmHg [0.32, 3.14] and 1.51 mmHg [0.28, 2.75] for an IQR increment of PM1 [16.7 µg/m3], PM2.5 [20.6 µg/m3] and PM10 [37.9 µg/m3] at lag 0-2 h, respectively) and decreased SpO2 (-0.44 % [-0.57, -0.29], -0.41 % [-0.53, -0.30] and - 0.40 % [-0.51, -0.30] for PM1, PM2.5 and PM10 at lag 0-1 h, respectively), which could last for about 2 h. Using IAPs could halve indoor PM levels, even in relatively low air pollution settings. The exposure-response relationships suggested that the benefits of IAPs on BP may only be observed when indoor PM exposure is reduced to a certain level.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Humans , Young Adult , Air Pollution, Indoor/analysis , Heart Rate , Blood Pressure , Oxygen Saturation , Air Pollution/adverse effects , Particulate Matter/analysis , Air Pollutants/analysis
6.
Sci Total Environ ; 848: 157814, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35931170

ABSTRACT

Atmospheric black carbon (BC), primary and secondary brown carbon (BrCpri and BrCsec) are the light-absorbing carbonaceous aerosol components. The vertical changes in the BC and BrC distributions are not generally known. Here, we presented a study of the spectral light absorption properties, direct solar absorption, and potential source areas of BC and BrC at the foothill (375 m a.s.l.) and summit (2060 m a.s.l.) of Mt. Hua, China. More than tripled BC and BrC light absorption coefficient were observed at the foothill compared to the summit. The dominant carbonaceous light-absorbing was attributed to BC with the percentages of 77 % (foothill) and 79 % (summit), respectively. The light absorption coefficient and direct solar absorption of BrCpri were much higher than those of BrCsec at foothill, especially in winter. The enhancing contributions of BrCsec light absorption coefficient and direct solar absorption were observed with high RH and visibility at the summit. The light absorption properties of BC, BrCpri, and BrCsec may be attributed to the emissions, meteorological conditions, and photochemical oxidation. The inferred potential source spatial distributions of BC and BrCpri showed different patterns at the foothill and summit. The results underlined the primary emission effects (including BC and BrCpri) at the foothill and the importance of BrCsec at the summit, respectively.


Subject(s)
Air Pollutants , Carbon , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Environmental Monitoring/methods , Soot/analysis
7.
Environ Sci Pollut Res Int ; 29(8): 11865-11873, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34553281

ABSTRACT

Fine particulate matter (PM2.5) has been linked to cardiopulmonary disease and systemic effects in humans. However, few studies have investigated the particle bioreactivity in Chinese megacities during haze episodes. The objective of this study was to determine the contributions of chemical components in PM2.5 to particle bioreactivity in Chinese megacities during haze episodes. PM2.5 samples were collected in 14 megacities across China from 23 December 2013 to 16 January 2014. Average PM2.5 concentrations ranged 88.92~199.67 µg/m3. Organic carbon (OC), elemental carbon (EC), anions, and cations per unit of PM2.5 were linked to cellular bioreactivity (i.e., reactive oxygen species (ROS) as assessed by dichlorodihydrofluorescein diacetate (DCFH) and inflammation as assessed by interleukin (IL)-6 in A549 cells). The contributions of chemicals in PM2.5 to ROS and inflammation were examined by the Pearson correlation coefficient and random forests. These results indicated that OC, Ca2+, SO42-, Cl-, F-, K+, and NO3- contributed to ROS production, whereas OC, Cl-, EC, K+, F-, Na+, and Ca2+ contributed to inflammation. In conclusion, PM2.5-contained OC and acidic ions are important in regulation of oxidative stress and inflammation during haze episodes. Our findings suggest that severe haze PM2.5 events cause deterioration in air quality and may adversely affect human health.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Cities , Environmental Monitoring , Humans , Ions/analysis , Particle Size , Particulate Matter/analysis , Seasons
8.
Sci Total Environ ; 806(Pt 3): 151217, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34717999

ABSTRACT

An outdoor solar assisted large-scale cleaning system (SALSCS) was constructed to mitigate the levels of fine particulate matter (PM2.5) in urban areas of Xi'an China, providing a quasi-experimental opportunity to examine the biologic responses to the changes in pollution level. We conducted this outdoor SALSCS based real-world quasi-interventional study to examine the associations of the SALSCS intervention and changes in air pollution levels with the biomarkers of systemic inflammation and oxidative stress in healthy elders. We measured the levels of 8-hydrox-2-deoxyguanosine (8-OHdG), Interlukin-6 (IL-6), as well as tumor necrosis factor alpha (TNF-α) from urine samples, and IL-6 from saliva samples of 123 healthy retired participants from interventional/control residential areas in two sampling campaigns. We collected daily 24-h PM2.5 samples in two residential areas during the study periods using mini-volume samplers. Data on PM10, gaseous pollutants and weather factors were collected from the nearest national air quality monitoring stations. We used linear mixed-effect models to examine the percent change in each biomarker associated with the SALSCS intervention and air pollution levels, after adjusting for time trend, seasonality, weather factors and personal characteristics. Results showed that the SALSCS intervention was significantly associated with decreases in the geometric mean of biomarkers by 47.6% (95% confidence interval: 16.5-67.2%) for 8-OHdG, 66% (31.0-83.3%) for TNF-α, 41.7% (0.2-65.9%) and 43.4% (13.6-62.9%) for urinary and salivary IL-6, respectively. An inter-quartile range increase of ambient PM2.5 exposure averaged on the day of the collection of bio-samples and the day before (34.1 µg/m3) was associated, albeit non-significantly so, with 22.8%-37.9% increases in the geometric mean of these biomarkers. This study demonstrated that the SALSCS intervention and decreased ambient air pollution exposure results in lower burden of systemic inflammation and oxidative stress in older adults.


Subject(s)
Air Pollutants , Air Pollution , Aged , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Pollution , Humans , Oxidative Stress , Particulate Matter/analysis
9.
J Hazard Mater ; 424(Pt C): 127593, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34736177

ABSTRACT

Formaldehyde is a typical indoor air pollutant that has posed severely adverse effects on human health. Herein, a novel FeCo alloy nanoparticle-embedded nitrogen-doped carbon (FeCo@NC) was synthesized with the aim of tailoring the transition-metal d-band structure toward an improved formaldehyde oxidation activity for the first time. A unique core@shell metal-organic frameworks (MOFs) architecture with a Fe-based Prussian blue analogue core and Co-containing zeolite imidazole framework shell was firstly fabricated. Then, Fe and Co ion alloying was readily achieved owing to the inherent MOF porosity and interionic nonequilibrium diffusion occurring during pyrolysis. High-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure spectra confirm that small FeCo alloys in situ form in FeCo@NC, which exhibits a higher formaldehyde removal efficiency (93%) than the monometallic Fe-based catalyst and a remarkable CO2 selectivity (85%) at room temperature. Density functional theory calculations indicate the number of electrons transferred from the metal core to the outer carbon layer is altered by alloying Fe and Co. More importantly, a downshift in the d-band center relative to the Fermi level occurs from - 0.93 to - 1.04 eV after introducing Co, which could alleviate the adsorption of reaction intermediates and greatly improve the catalytic performance.

10.
Environ Pollut ; 288: 117754, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34284205

ABSTRACT

The mass, chemical composition and toxicological properties of fine particulates (PM2.5) emitted from cooking activities in three Hong Kong based restaurants and two simulated cooking experiments were characterized. Extracts from the PM2.5 samples elicited significant biological activities [cell viability, generation of reactive oxygen species (ROS), DNA damage and inflammation effect (TNF-α)] in a dose-dependent manner. The composition of PAHs, oxygenated PAHs (OPAHs) and azaarenes (AZAs) mixtures differed between samples. The concentration ranges of the Σ30PAHs, Σ17OPAHs and Σ4AZAs and Σ7Carbonyls in the samples were 9627-23,452 pg m-3, 503-3700 pg m-3, 33-263 pg m-3 and 158 - 5328 ng m-3, respectively. Cell viability caused by extracts from the samples was positively correlated to the concentration of benzo[a]anthracene, indeno[1,2,3-cd]pyrene and 1,4-naphthoquinone in the PM2.5 extracts. Cellular ROS production (upon exposure to extracts) was positively correlated with the concentrations of PM2.5, decaldehyde, acridine, Σ17OPAHs and 7 individual OPAHs. TNF-α showed significant positive correlations with the concentrations of most chemical species (elemental carbon, 16 individual PAHs including benzo[a]pyrene, Σ30PAHs, SO42-, Ca2+, Ca, Na, K, Ti, Cr, Mn, Fe, Cu and Zn). The concentrations of Al, Ti, Mn, Σ30PAHs and 8 individual PAHs including benzo[a]pyrene in the samples were positively correlated with DNA damage caused by extracts from the samples. This study demonstrates that inhalation of PM2.5 emitted from cooking could result in adverse human health effects.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , Coal , Cooking , Environmental Monitoring , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity
11.
Sci Total Environ ; 757: 143811, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33246717

ABSTRACT

In order to improve local air quality of Hong Kong, more than 99% taxies and public light buses were changed from diesel to liquefied petroleum gas (LPG) fuel type in the early 2000s. In addition to the catalytic converters wear and tear, it is necessary to control air pollutants emitted from LPG vehicles. Therefore, an LPG catalytic converter replacement programme (CCRP) was fulfilled from October 2013 to April 2014 by the Hong Kong government. Roadside volatile compounds (VOCs) were measured by on-line measurement techniques before and after the programme to evaluate the effectiveness of the LPG CCRP. The mixing ratios of total measured VOCs were found decreased from 69.3 ± 12.6 ppbv to 43.9 ± 6.5 ppbv after the LPG CCRP with the decreasing percentage of 36.7%. In addition, the total mixing ratio of LPG tracers, namely propane, i-butane, and n-butane, accounted for 49% of total measured VOCs before the LPG CCRP and the weighting percentage decreased to 34% after the programme. Moreover, the source apportionment of roadside VOCs also reflects the large decreasing trend of LPG vehicular emissions after the air pollution control measure. Due to the application of PTR-MS on measuring real-time VOCs and oxygenated volatile compounds (OVOCs) in this study, the emission ratios of individual OVOCs were investigated and being utilized to differentiate primary and secondary/biogenic sources of roadside OVOCs in Hong Kong. The findings demonstrate the effectiveness of the intervention programme, and are helpful to further implementation of air pollution control strategies in Hong Kong.

12.
Huan Jing Ke Xue ; 41(3): 1013-1024, 2020 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-32608601

ABSTRACT

Intensive social and economic activity has led to serious pollution in the Yangtze River economic belt since 2000. It is urgent to study the evolution of the distribution of PM2.5 concentration and its influencing factors in this area, to adopt new ways of development into practice and promote comprehensive regional air pollution prevention and control. Based on PM2.5 concentration estimated by remote sensing retrieval, this paper studied the evolution of the distribution of PM2.5 concentration in the Yangtze River economic belt from 2000 to 2016, and analyzed spatial non-stationarity of the influence of natural and socio-economic factors on this evolution via a geographically weighted regression model. The results showed that:①The general law of PM2.5 concentration presented as higher in the east and lower in the west, with a significant trait of the pollution agglomerations corresponding to urban agglomerations. ②Taking the year 2007 as a divide, annual concentration of PM2.5 went through a pattern of annually increasing from 2000 to 2007. and then wavelike decreasing from 2007 to 2016. The annual average concentration increased to 44.1 µg·m-3 in 2007 from the record of 27.2 µg·m-3 in 2000, and then decreased to 33.6 µg·m-3 in 2016. In terms of regions polluted, before 2007, it covered areas including the Yangtze River Delta urban agglomerations, the Yangtze River Middle Reaches urban agglomerations, and the Chengdu-Chongqing urban agglomerations, before quickly stretching to their neighboring areas; after 2007, the extent of areas covered shrank. ③Based on spatial auto-correlation analysis, PM2.5 concentration had a significant spatial auto-correlation with hot spots spread over Shanghai, Jiangsu, north-central Anhui, northern Zhejiang, and the central part of Hubei, while cool spots were located in Yunnan, the western and southern parts of Sichuan, and the western part of Guizhou. ④There is a space-time discrepancy by socio-economic and natural factors in the distribution of PM2.5 concentration. The socio-economic factors mainly have a positive influence on the concentration, whereas precipitation, one of the natural factors, has a negative influence. The remaining natural factors not only varied in their degree of influence, but also triggered the influence either in a positive or negative manner from time to time and space to space.

13.
Huan Jing Ke Xue ; 41(4): 1535-1543, 2020 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-32608658

ABSTRACT

Based on the ozone monitoring data from 2014 to 2018, we presented the variation of ozone concentration in Xi'an and revealed the effects of ozone concentration by meteorological factors based on the generalized additive model (GAM). The results showed that ① with increasing ozone concentration year by year, the assessment standard of ozone pollution was overtaken by three consecutive years since 2016. However, the rising trend was slowed down since 2017 as a result of the strengthened pollution control during summer. ② The monthly curve of ozone concentration was presented as a reversed "V" model with a rising trend accompanying the rising temperature from January to July and a decreasing one during the rest of the year, peaking in July in terms of average monthly ozone concentration. However, this model would turn into an "M" in years with high precipitation when the valley witnessed the highest precipitation in a month. ③ The ozone pollution increased from the year 2014 to 2018 with a stretch-forward ozone polluted time. Furthermore, the rates of ozone non-attainment increased from 1.9% in 2014 to 14% in 2018. In addition, the time ozone pollution emerged advanced from July to May. ④ Based on the GAM model, ozone concentration was non-colinearly related to temperature, air pressure, sunshine duration, and relative humidity. However, the curves of these factors varied considerably, with a positive influence of temperature and sunshine duration and a negative influence of air pressure and relative humidity. The influence of precipitation was mainly witnessed in summers, while no influence of wind was observed. Furthermore, ozone pollution can be easily triggered under the following conditions:temperature>24℃, air pressure <962 hPa, sunshine duration>9 h, and a relative humidity 36%-65% with no rain.

14.
Sci Total Environ ; 742: 140501, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32622166

ABSTRACT

Epidemiological studies have demonstrated significant associations between traffic-related air pollution and adverse health outcomes. Personal exposure to fine particles (PM2.5) in transport microenvironments and their toxicological properties remain to be investigated. Commuter exposures were investigated in public transport systems (including the buses and Mass Transit Railway (MTR)) along two sampling routes in Hong Kong. Real-time sampling for PM2.5 and black carbon (BC), along with integrated PM2.5 sampling, were performed during the warm and cold season of 2016-2017, respectively. Commuter exposure to BC during 3-hour commuting time exhibited a wider range, from 3.4 to 4.6 µg/m3 on the bus and 5.5 to 8.7 µg/m3 in MTR cabin (p < .05). PM2.5 mass and major chemical constituents (including organic carbon (OC), elemental carbon (EC), and metals) were analyzed. Cytotoxicity, including cellular reactive oxygen species (ROS) production, was determined in addition to acellular ROS generation. PM2.5 treatment promoted the ROS generation in a concentration-dependent manner. Consistent diurnal variations were observed for commuter exposure to BC and PM2.5 components, along with cellular and acellular ROS generation, which marked with two peaks during the morning (08:00-11:00) and evening rush hours (17:30-20:30). Commuter exposures in the MTR system were characterized by higher levels of PM2.5 and elemental components (e.g., Ca, Cr, Fe, Zn, Ba) compared to riding the bus, along with higher cellular and acellular ROS production (p < .01). These metals were attributed to different sources: rail tracks, wheels, brakes, and crustal origin. Weak to moderate associations were shown for the analyzed transition metals with PM2.5-induced cell viability and cellular ROS. Multiple linear regression analysis revealed that Ni, Zn, Mn, Fe, Ti, and Co attributed to cytotoxicity and ROS generation. These findings underscore the importance of commuter exposures and their toxic effects, urging effective mitigating strategies to protect human health.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Carbon/analysis , Environmental Monitoring , Hong Kong , Humans , Metals/analysis , Vehicle Emissions/analysis
15.
Environ Res ; 188: 109780, 2020 09.
Article in English | MEDLINE | ID: mdl-32554275

ABSTRACT

Direct evidence about associations between fine particles (PM2.5) components and the corresponding PM2.5 bioreactivity at the individual level is limited. We conducted a panel study with repeated personal measurements involving 56 healthy residents in Hong Kong. Fractional exhaled nitric oxide (FeNO) levels were measured from these subjects. Out of 56 subjects, 27 (48.2%) participated in concurrent outdoor, indoor, and personal PM2.5 monitoring. Organic carbon (OC), elemental carbon (EC), particle bound-polycyclic aromatic hydrocarbons (PAHs), and phthalates were analyzed. Alteration in cell viability, lactic dehydrogenase (LDH), interleukin-6 (IL-6), and 8-isoprostane by 50 µg/mL PM2.5 extracts was determined in A549 cells in vitro. Moderate heterogeneities were shown in PM2.5 exposures and the corresponding PM2.5 bioreactivity across different sample types. Associations between the analyzed components and PM2.5 bioreactivity were assessed using the multiple regression models. Toxicological results revealed that indoor and personal exposure to OC as well as PAH compounds and their derivatives (e.g., Alkyl-PAHs, Oxy-PAHs) induced cell viability reduction and increase in levels of LDH, IL-6, and 8-isoprostane. Overall, OC in personal exposure played a dominant role in PM2.5-induced bioreactivity. Subsequently, we examined the associations of FeNO with IL-6 and 8-isoprostane levels using mixed-effects models. The results showed that per interquartile change in IL-6 and 8-isoprostane were associated with a 6.4% (p < 0.01) and 11.1% (p < 0.01) increase in FeNO levels, respectively. Our study explored the toxicological properties of chemical components in PM2.5 exposure, which suggested that residential indoors and personal OC and PAHs should be of great concern for human health. These findings indicated that further studies in inflammation and oxidative stress-related illnesses due to particle exposure would benefit from the assessment of in vitro PM2.5 bioreactivity.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution, Indoor/analysis , Carbon/analysis , Environmental Monitoring , Hong Kong , Humans , Particle Size , Particulate Matter/analysis , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/analysis
16.
Huan Jing Ke Xue ; 40(3): 1120-1131, 2019 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-31087958

ABSTRACT

Based on the ozone monitoring data from 2015 to 2017, this study presents the spatial-temporal variation of the ozone concentration and its driving factors in major cities in China via Kriging interpolation, spatial autocorrelation analysis, hotspot analysis, and geographical detector. The results show that:① The ozone pollution became increasingly heavier from 2015 to 2017, with the number of cities in which the 90th percentile of daily maximum 8-h ozone concentration exceeded the air quality standard (GB 3095-2012) increased from 74 to 121, and the proportion of non-attainment days increased from 5.2 percent to 8.1 percent. ② Ozone pollution mainly happened from April to September, during which the non-attainment days contributed 87.5 percent to 95.3 percent to the yearly total number of ozone polluted days. From May to July, ozone concentrations increased the most dramatically, with the proportion of non-attainment days increasing from 10.6 percent in 2015 to 20.5 percent in 2017. Moreover, in 2017, 83.0 percent of the moderate ozone pollution and 91.0 percent of the severe ozone pollution happened from May to July. ③ With the ever increasing ozone concentration over the North China Plain, the high ozone polluted areas such as the Beijing-Tianjin-Hebei region and Yangtze River Delta urban agglomeration are connected geographically. They form the most highly polluted area in China, which includes the Bohai Rim region, Zhongyuan urban agglomeration, Yangtze River Delta urban agglomeration, Shanxi Province, Guanzhong area, and the middle part of Inner Mongolia. In addition, cities in Pearl River Delta region, Chengdu-and-Chongqing urban agglomeration, and the southern part of East China are also gathering speed in terms of ozone pollution, among which Chengdu-and-Chongqing urban agglomeration has become a new ozone-polluted center. ④ The spatial agglomeration of ozone concentration has been enhanced year by year with hot spots distributed mainly in the North China Plain and the middle and lower reaches of the Yangtze River. In contrast, there are cold spots in Northeast China, Southwest China, and Southern China. ⑤ The analysis results from geographical detector show that meteorological factors, industrialization, urbanization, and emissions of ozone precursors all have a significant effect on the distribution of the ozone concentration, but there are also discrepancies in the priority of the driving factors in different regions and seasons.

17.
Chemosphere ; 230: 578-586, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31125886

ABSTRACT

The physical, chemical and bioreactivity characteristics of fine particulate matter (PM2.5) collected near (<1 km) two landfill sites and downwind urban sites were investigated. The PM2.5 concentrations were significantly higher in winter than summer. Diurnal variations of PM2.5 were recorded at both landfill sites. Soot aggregate particles were identified near the landfill sites, which indicated that combustion pollution due to landfill activities was a significant source. High correlation coefficients (r) implied several inorganic elements and water-soluble inorganic ions (vanadium (V), copper (Cu), chloride (Cl-), nitrate (NO3-), sodium (Na) and potassium (K)) were positively associated with wind flow from the landfill sites. Nevertheless, no significant correlations were also identified between these components against DNA damage. Significant associations were observed between DNA damage and some heavy metals such as cadmium (Cd) and lead (Pb), and total Polycyclic Aromatic Hydrocarbons (PAHs) during the summer. The insignificant associations of DNA damage under increased wind frequency from landfills suggested that the PM2.5 loading from sources such as regional sources was possibly an important contributing factor for DNA damage. This outcome warrants the further development of effective and source-specific landfill management regulations for particulate matter production control to the city.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Oxidative Stress/drug effects , Particulate Matter/analysis , Waste Disposal Facilities , Air Pollutants/toxicity , Cities , DNA Damage , Hong Kong , Metals, Heavy/analysis , Metals, Heavy/toxicity , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Seasons , Wind
18.
Environ Pollut ; 245: 675-683, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30497001

ABSTRACT

This study investigated the effects of pollution emissions on the bioreactivity of PM2.5 during Asian dust periods. PM2.5 during the sampling period were 104.2 and 85.7 µg m-3 in Xi'an and Beijing, respectively, whereas PM2.5 which originated from the Tengger Desert was collected (dust background). Pollution conditions were classified as non-dust days, pollution episode (PE), dust storm (DS)-1, and DS-2 periods. We observed a significant decrease in cell viability and an increase in LDH that occurred in A549 cells after exposure to PM2.5 during a PE and DS-1 in Xi'an and Beijing compared to Tengger Desert PM2.5. Positive matrix factorization was used to identify pollution emission sources. PM2.5 from biomass and industrial sources contributed to alterations in cell viability and LDH in Xi'an, whereas vehicle emissions contributed to LDH in Beijing. OC, EC, Cl-, K+, Mg2+, Ca, Ti, Mn, Fe, Zn, and Pb were correlated with cell viability and LDH for industrial emissions in Xi'an during DS. OC, EC, SO42-, S, Ti, Mn, and Fe were correlated with LDH for vehicle emissions in Beijing during DS. In conclusion, the dust may carry pollutants on its surface to downwind areas, leading to increased risks of particle toxicity.


Subject(s)
Air Pollutants/analysis , Dust/analysis , Environmental Monitoring , Particulate Matter/analysis , A549 Cells , Air Pollutants/chemistry , Air Pollutants/toxicity , Beijing , China , Cities , Environmental Pollution , Humans , Particle Size , Particulate Matter/chemistry , Particulate Matter/toxicity
19.
Sci Total Environ ; 654: 514-524, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30447590

ABSTRACT

Personal exposure and ambient fine particles (PM2.5) measurements for 13 adult subjects (ages 19-57) were conducted in Hong Kong between April 2014 and June 2015. Six to 21 personal samples (mean = 19) per subject were obtained throughout the study period. Samples were analyzed for mass by gravimetric analysis, and 19 elements (from Na to Pb) were analyzed using X-Ray Fluorescence. Higher subject-specific correlations between personal and ambient sulfur (rs = 0.92; p < 0.001) were found as compared to PM2.5 mass (rs = 0.79; p < 0.001) and other elements (0.06 < rs < 0.86). Personal vs. ambient sulfur regression yielded an average exposure factor (Fpex) of 0.73 ±â€¯0.02, supporting the use of sulfur as a surrogate to estimate personal exposure to PM2.5 of ambient origin (Ea). Ea accounted for 41-82% and 57-73% of total personal PM2.5 exposures (P) by season and by subject, respectively. The importance of both Ea and non-ambient exposures (Ena, 11.2 ±â€¯5.6 µg/m3; 32.5 ±â€¯10.9%) are noted. Mixed-effects models were applied to estimate the relationships between ambient PM2.5 concentrations and their corresponding exposure variables (Ea, P). Higher correlations for Ea (0.90; p < 0.001) than for P (0.58; p < 0.01) were found. A calibration coefficient < 1 suggests an attenuation of 22% (ranging 16-28%) of the true effect estimates when using average ambient concentrations at central monitoring stations as surrogates for Ea. Stationary ambient data can be used to assess population exposure only if PM exposure is dominated by Ea.


Subject(s)
Air Pollutants/analysis , Environmental Exposure/analysis , Particulate Matter/analysis , Adult , Female , Hong Kong , Humans , Male , Middle Aged , Seasons , Young Adult
20.
Sci Total Environ ; 628-629: 1165-1177, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30045539

ABSTRACT

Personal monitoring for fine particulate matter (PM2.5) was conducted for adults (48 subjects, 18-63years of age) in Hong Kong during the summer and winter of 2014-2015. All filters were analyzed for PM2.5 mass and constituents (including carbonaceous aerosols, water-soluble ions, and elements). We found that season (p=0.02) and occupation (p<0.001) were significant factors affecting the strength of the personal-ambient PM2.5 associations. We applied mixed-effects models to investigate the determinants of personal exposure to PM2.5 mass and constituents, along with within- and between-individual variance components. Ambient PM2.5 was the dominant predictor of (R2=0.12-0.59, p<0.01) and the largest contributor (>37.3%) to personal exposures for PM2.5 mass and most components. For all subjects, a one-unit (2.72µg/m3) increase in ambient PM2.5 was associated with a 0.75µg/m3 (95% CI: 0.59-0.94µg/m3) increase in personal PM2.5 exposure. The adjusted mixed-effects models included information extracted from individual's activity diaries as covariates. The results showed that season, occupation, time indoors at home, in transit, and cleaning were significant determinants for PM2.5 components in personal exposure (R2ß=0.06-0.63, p<0.05), contributing to 3.0-70.4% of the variability. For one-hour extra time spent at home, in transit, and cleaning an average increase of 1.7-3.6% (ammonium, sulfate, nitrate, sulfur), 2.7-12.3% (elemental carbon, ammonium, titanium, iron), and 8.7-19.4% (ammonium, magnesium ions, vanadium) in components of personal PM2.5 were observed, respectively. In this research, the within-individual variance component dominated the total variability for all investigated exposure data except PM2.5 and EC. Results from this study indicate that performing long-term personal monitoring is needed for examining the associations of mass and constituents of personal PM2.5 with health outcomes in epidemiological studies by describing the impacts of individual-specific data on personal exposures.

SELECTION OF CITATIONS
SEARCH DETAIL
...