Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13910, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37626110

ABSTRACT

Ground Penetrating Radar (GPR) is one of the most used devices for road structural damages detection. However, due to the different roadbed conditions and various disturbances in the nearby environment during detection, there are great difficulties in interpreting detection images, which also hinders automatic detection based on deep learning. In this work, we design a GPR image denoising method based on Cyclegan. We select the most suitable generator and add different attention mechanisms. After denoising the natural GPR road detection image, using the Yolo (You Only Look Once) to test the accuracy of the original image and the denoised image after adding different attention mechanisms. The detection accuracy is improved by 30%. The results of the detection network and the evaluation of the denoised images by GPR image interpreters indicate that the method has the following advantages: lower requirements for training data sets, a wide range of data sources, low cost, good denoising effect, and automatic detection of GPR images. It is of great help to the automatic detection of GPR images.

2.
PeerJ ; 11: e15225, 2023.
Article in English | MEDLINE | ID: mdl-37065701

ABSTRACT

Gypenosides (GP), extracted from the traditional Chinese herb Gynostemma pentaphyllum (Thunb.) Makino, have been used to treat metabolic disorders, including lipid metabolism disorders and diabetes. Although recent studies have confirmed their beneficial effects in nonalcoholic fatty liver disease (NAFLD), the underlying therapeutic mechanism remains unclear. In this study, we explored the protective mechanism of GP against NAFLD in mice and provided new insights into the prevention and treatment of NAFLD. Male C57BL6/J mice were divided into three experimental groups: normal diet, high-fat diet (HFD), and GP groups. The mice were fed an HFD for 16 weeks to establish an NAFLD model and then treated with GP for 22 weeks. The transcriptome and proteome of the mice livers were profiled using RNA sequencing and high-resolution mass spectrometry, respectively. The results showed that GP decreased serum lipid levels, liver index, and liver fat accumulation in mice. Principal component and heatmap analyses indicated that GP significantly modulated the changes in the expression of genes associated with HFD-induced NAFLD. The 164 differentially expressed genes recovered using GP were enriched in fatty acid and steroid metabolism pathways. Further results showed that GP reduced fatty acid synthesis by downregulating the expression of Srebf1, Fasn, Acss2, Acly, Acaca, Fads1, and Elovl6; modulated glycerolipid metabolism by inducing the expression of Mgll; promoted fatty acid transportation and degradation by inducing the expression of Slc27a1, Cpt1a, and Ehhadh; and reduced hepatic cholesterol synthesis by downregulating the expression of Tm7sf2, Ebp, Sc5d, Lss, Fdft1, Cyp51, Nsdhl, Pmvk, Mvd, Fdps, and Dhcr7. The proteomic data further indicated that GP decreased the protein expression levels of ACACA, ACLY, ACSS2, TM7SF2, EBP, FDFT1, NSDHL, PMVK, MVD, FDPS, and DHCR7 and increased those of MGLL, SLC27A1, and EHHADH. In conclusion, GP can regulate the key genes involved in hepatic lipid metabolism in NAFLD mice, providing initial evidence for the mechanisms underlying the therapeutic effect of GP in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Male , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Lipid Metabolism , Diet, High-Fat/adverse effects , Gynostemma/metabolism , Proteomics , Fatty Acids/therapeutic use , 3-Hydroxysteroid Dehydrogenases/metabolism
3.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36901774

ABSTRACT

Alcoholic liver disease (ALD) is currently considered a global healthcare problem with limited pharmacological treatment options. There are abundant cell types in the liver, such as hepatocytes, endothelial cells, Kupffer cells and so on, but little is known about which kind of liver cells play the most important role in the process of ALD. To obtain a cellular resolution of alcoholic liver injury pathogenesis, 51,619 liver single-cell transcriptomes (scRNA-seq) with different alcohol consumption durations were investigated, 12 liver cell types were identified, and the cellular and molecular mechanisms of the alcoholic liver injury were revealed. We found that more aberrantly differential expressed genes (DEGs) were present in hepatocytes, endothelial cells, and Kupffer cells than in other cell types in alcoholic treatment mice. Alcohol promoted the pathological processes of liver injury; the specific mechanisms involved: lipid metabolism, oxidative stress, hypoxia, complementation and anticoagulation, and hepatocyte energy metabolism on hepatocytes; NO production, immune regulation, epithelial and cell migration on endothelial cells; antigen presentation and energy metabolism on Kupffer cells, based on the GO analysis. In addition, our results showed that some transcription factors (TFs) are activated in alcohol-treated mice. In conclusion, our study improves the understanding of liver cell heterogeneity in alcohol-fed mice at the single-cell level. It has potential value for understanding key molecular mechanisms and improving current prevention and treatment strategies for short-term alcoholic liver injury.


Subject(s)
Liver Diseases, Alcoholic , RNA , Mice , Animals , RNA/metabolism , Endothelial Cells/metabolism , Liver/metabolism , Hepatocytes/metabolism , Liver Diseases, Alcoholic/metabolism , Ethanol/pharmacology , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...