Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Small ; 20(25): e2309331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38213019

ABSTRACT

The ß-relaxation is one of the major dynamic behaviors in metallic glasses (MGs) and exhibits diverse features. Despite decades of efforts, the understanding of its structural origin and contribution to the overall dynamics of MG systems is still unclear. Here two palladium-based Pd─Cu─P and Pd─Ni─P MGs are reported with distinct different ß-relaxation behaviors and reveal the structural origins for the difference using the advanced X-ray photon correlation spectroscopy and absorption fine structure techniques together with the first-principles calculations. The pronounced ß-relaxation and fast atomic dynamics in the Pd─Cu─P MG mainly come from the strong mobility of Cu atoms and their locally favored structures. In contrast, the motion of Ni atoms is constrained by P atoms in the Pd─Ni─P MG, leading to the weakened ß-relaxation peak and sluggish dynamics. The correlation of atomic dynamics with microscopic structures provides a way to understand the structural origins of different dynamic behaviors as well as the nature of aging in disordered materials.

2.
Adv Mater ; 36(4): e2309732, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37971044

ABSTRACT

Gallium-based metallic liquids, exhibiting high theoretical capacity, are considered a promising anode material for room-temperature liquid metal alkali-ion batteries. However, electrochemical performances, especially the cyclic stability, of the liquid metal anode for alkali-ion batteries are strongly limited because of the volume expansion and unstable solid electrolyte interphase film of liquid metal. Here, the bottleneck problem is resolved by designing carbon encapsulation on gallium-indium liquid metal nanoparticles (EGaIn@C LMNPs). A superior cycling stability (644 mAh g-1 after 800 cycles at 1.0 A g-1 ) is demonstrated for lithium-ion batteries, and excellent cycle stability (87 mAh g-1 after 2500 cycles at 1.0 A g-1 ) is achieved for sodium-ion batteries by carbon encapsulation of the liquid metal anode. Morphological and phase changes of EGaIn@C LMNPs during the electrochemical reaction process are revealed by in situ transmission electron microscopy measurements in real-time. The origin for the excellent performance is uncovered, that is the EGaIn@C core-shell structure effectively suppresses the non-uniform volume expansion of LMNPs from ≈160% to 127%, improves the electrical conductivity of the LMNPs, and exhibits superior electrochemical kinetics and a self-healing phenomenon. This work paves the way for the applications of room-temperature liquid metal anodes for high-performance alkali-ion batteries.

3.
Materials (Basel) ; 16(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770158

ABSTRACT

The mechanical properties of high-entropy alloys (HEAs) can be regulated by altering the stacking fault energy (SFE) through compositional modulation. The Co-rich HEAs, exhibiting deformation twinning and even strain-induced martensitic transformation at room temperature, suffer from insufficient ductility at high strength. In this work, we developed Co-rich (Co40Fe25Cr20Ni15)100-xAlx (x = 0 and 5 at.%) HEAs and investigated their tensile behaviors at room temperature. The addition of Al resulted in a massive improvement in the strength-ductility product, even at similar grain sizes, and also altered the fracture mode from quasi-cleavage to ductile dimple fracture. Interestingly, both alloys were deformed by mechanical twinning, which was also verified by molecular dynamics (MD) simulations. The MD simulations revealed the SFE increased upon Al addition; however, the slip energy barrier was reduced, which favored the mobility of dislocations and twinning propensity to prolong strain hardening. The present findings provide further insights into the regulation of mechanical properties of HEAs by Al-alloying.

4.
ACS Appl Mater Interfaces ; 14(33): 38196-38204, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35951545

ABSTRACT

Soft devices, especially capacitive stress (or strain) sensors, are important for applications, including wearable medical monitoring, electronic skin, and soft robotics. The incorporation of liquid metal particles (LMPs) into highly deformable elastomers as inclusions ameliorates the mechanical compliance caused by a rigid filler. The high dielectric constant and liquid feature of LMPs are suitable for soft sensors with high sensitivity and a large real-time dynamic detection range. Here, a class of LM-elastomer composites are introduced with elastic and high dielectric properties, making them uniquely suitable for the application of soft stress sensors. The prepared stretchable soft stress sensor can detect the bending degree of the finger, monitor physiological signals in real time, and distinguish the vibration from the pronunciation of different letters. The nanoscale X-ray computational tomography (nano-CT) measurements indeed detect the changes of LMPs under stress, i.e., LMPs in the matrix distribute from uneven to relatively uniform, agglomerate, and even connect each other to have a conduction path in the composition with high LMP contents, which cause the changes in the physical properties of devices under operation. The cognition of LMP changes in composites under stress is instructive for promoting their further applications in the field of soft devices.


Subject(s)
Elastomers , Wearable Electronic Devices , Electronics , Metals , Monitoring, Physiologic
5.
Nat Commun ; 13(1): 2120, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35440578

ABSTRACT

Inspired by gradient materials in nature, advanced engineering components with controlled structural gradients have attracted substantial research interests due to their exceptional combinations of properties. However, it remains challenging to generate structural gradients that penetrate through bulk materials, which is essential for achieving enhanced mechanical properties in metallic materials. Here, we report practical strategies to design controllable structural gradients in bulk metallic glasses (BMGs). By adjusting processing conditions, including holding time and/or controlling temperatures, of cryogenic thermal cycling and fast cooling, two different types of gradient metallic glasses (GMGs) with spatially gradient-distributed free volume contents can be synthesized. Both mechanical testing and atomistic simulations demonstrate that the spatial gradient can endow GMGs with extra plasticity. Such an enhanced mechanical property is governed by the gradient-induced deflection of shear deformation that fundamentally suppresses the unlimited shear localization on a straight plane that would be expected in BMGs without such a gradient.

6.
Sci Adv ; 7(34)2021 Aug.
Article in English | MEDLINE | ID: mdl-34417183

ABSTRACT

High-entropy alloys (HEAs), as an emerging class of materials, have pointed a pathway in developing alloys with interesting property combinations. Although they are not exempted from the strength-ductility trade-off, they present a standing chance in overcoming this challenge. Here, we report results for a precipitation-strengthening strategy, by tuning composition to design a CoNiV-based face-centered cubic/B2 duplex HEA. This alloy sustains ultrahigh gigapascal-level tensile yield strengths and excellent ductility from cryogenic to elevated temperatures. The highest specific yield strength (~150.2 MPa·cm3/g) among reported ductile HEAs is obtained. The ability of the alloy presented here to sustain this excellent strength-ductility synergy over a wide temperature range is aided by multiple deformation mechanisms i.e., twins, stacking faults, dynamic strain aging, and dynamic recrystallization. Our results open the avenue for designing precipitation-strengthened lightweight HEAs with advanced strength-ductility combinations over a wide service temperature range.

7.
Nanotechnology ; 32(33)2021 May 24.
Article in English | MEDLINE | ID: mdl-33951621

ABSTRACT

Amorphous alloys (AAs) are promising materials due to their unique properties and have been applied in various biomaterial coatings and micro-electro-mechanical systems. However, they have seldom been applied in the optical nano-device. Here, we systematically investigate morphology, microstructure, mechanical and optical properties of an Au-Cu-Si AA and successfully design and fabricate a broadband optical absorber using the Au-Cu-Si AA. Such device achieves an average absorption up to about 95% from 500 to 1500 nm with a thickness less than 300 nm. This is of significance for exploration the feasibility of AAs application in the field of optical nano-devices.

8.
J Phys Chem B ; 125(2): 657-664, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33412855

ABSTRACT

We use the pulse current thermoplastic forming technique based on joule heating to rejuvenate the atomic structure of a La62Al14Ag2.34Ni10.83Co10.83 bulk metallic glass (BMG). The pulse-formed sample exhibits more pronounced ß-relaxation than the as-cast one due to the increased free volume. Instead, the sub-Tg annealing clearly weakens the ß-relaxation and also makes it more isolated from the α-relaxation, showing contributions from free volume and preferred structure. However, both treatments exhibit little influence on the following α-relaxation and high temperature crystallization kinetics. Our results open an effective way to rejuvenate the structure of BMGs and provide an in-depth understanding of the relationship between structural relaxations and crystallization kinetics of BMGs.

9.
J Phys Chem Lett ; 10(20): 6055-6060, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31553182

ABSTRACT

Applications of metallic glass thin films (MGTFs) in the optical area have seldom been reported. We successfully design and fabricate a broadband and durable absorber with MGTFs. It is found that the absorber, with a total thickness of only ∼230 nm smaller than the light wavelength, exhibits excellent performance, that is, an average absorption of >90% from the visible to the near-infrared range (500-1300 nm). This is of significance for the optical application of MGTFs with the potential for large-scale fabrication using superplastic deformation in the supercooled liquid region of MGTFs.

10.
Materials (Basel) ; 12(10)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100842

ABSTRACT

The effect of severe plastic deformation by high-pressure torsion (HPT) on the structure and plastic tensile properties of two Zr-based bulk metallic glasses, Zr55.7Ni10Al7Cu19Co8.3 and Zr64Ni10Al7Cu19, was investigated. The compositions were chosen because, in TEM investigation, Zr55.7Ni10Al7Cu19Co8.3 exhibited nanoscale inhomogeneity, while Zr64Ni10Al7Cu19 appeared homogeneous on that length scale. The nanoscale inhomogeneity was expected to result in an increased plastic strain limit, as compared to the homogeneous material, which may be further increased by severe mechanical work. The as-cast materials exhibited 0.1% tensile plasticity for Zr64Ni10Al7Cu19 and Zr55.7Ni10Al7Cu19Co8.3. Following two rotations of HPT treatment, the tensile plastic strain was increased to 0.5% and 0.9%, respectively. Further testing was performed by X-ray diffraction and by differential scanning calorimetry. Following two rotations of HPT treatment, the initially fully amorphous Zr55.7Ni10Al7Cu19Co8.3 exhibited significantly increased free volume and a small volume fraction of nanocrystallites. A further increase in HPT rotation number did not result in an increase in plastic ductility of both alloys. Possible reasons for the different mechanical behavior of nanoscale heterogeneous Zr55.7Ni10Al7Cu19Co8.3 and homogeneous Zr64Ni10Al7Cu19 are presented.

11.
J Chem Phys ; 142(16): 164506, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25933773

ABSTRACT

We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by "dynamic heterogeneity" in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔGa with temperature of both the Cu and Zr diffusion coefficients D, and the alpha structural relaxation time τα can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract "cooperatively rearranging regions" of AG. We also find coexisting clusters of relatively "immobile" atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of "mobile" atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized ("immobile") and wandering ("mobile") particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.

12.
Sci Rep ; 4: 5167, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24893772

ABSTRACT

Glass is a freezing phase of a deeply supercooled liquid. Despite its simple definition, the origin of glass forming ability (GFA) is still ambiguous, even for binary Cu-Zr alloys. Here, we directly study the stability of the supercooled Cu-Zr liquids where we find that Cu64Zr36 at a supercooled temperature shows deeper undercoolability and longer persistence than other neighbouring compositions with an equivalent driving Gibbs free energy. This observation implies that the GFA of the Cu-Zr alloys is significantly affected by crystal-liquid interfacial free energy. In particular, the crystal-liquid interfacial free energy of Cu64Zr36 in our measurement was higher than that of other neighbouring liquids and, coincidently a molecular dynamics simulation reveals a larger glass-glass interfacial energy value at this composition, which reflects more distinct configuration difference between liquid and crystal phase. The present results demonstrate that the higher crystal-liquid interfacial free energy is a prerequisite of good GFA of the Cu-Zr alloys.

13.
Proc Natl Acad Sci U S A ; 110(25): 10068-72, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23733928

ABSTRACT

When a material is heated, generally, it dilates. Here, we find a general trend that the average distance between a center atom and atoms in the first nearest-neighbor shell contracts for several metallic melts upon heating. Using synchrotron X-ray diffraction technique and molecular dynamics simulations, we elucidate that this anomaly is caused by the redistribution of polyhedral clusters affected by temperature. In metallic melts, the high-coordinated polyhedra are inclined to evolve into low-coordinated ones with increasing temperature. As the coordination number decreases, the average atomic distance between a center atom and atoms in the first shell of polyhedral clusters is reduced. This phenomenon is a ubiquitous feature for metallic melts consisting of various-sized polyhedra. This finding sheds light on the understanding of atomic structures and thermal behavior of disordered materials and will trigger more experimental and theoretical studies of liquids, amorphous alloys, glasses, and casting temperature effect on solidification process of crystalline materials.


Subject(s)
Alloys/chemistry , Hot Temperature , Materials Testing/methods , Metals/chemistry , Aluminum/chemistry , Gold/chemistry , Nickel/chemistry , Silver/chemistry , Synchrotrons , Tin/chemistry , X-Ray Diffraction , Zinc/chemistry
14.
Nanoscale ; 4(23): 7354-7, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23093135

ABSTRACT

A sheet-on-sheet reduced graphene oxide-ß-In(2)S(3) (RGO-In(2)S(3)) composite, was successfully synthesized via a one-step mild method. This fresh composite used as an anode material exhibits enhanced cyclability and specific capacity for lithium storage. These results are linked with the intrinsic layered structure of ß-In(2)S(3) sheets and the effective combination of ß-In(2)S(3) and RGO sheets. This results in a high specific surface area and good conductivity of RGO-In(2)S(3) composites, with higher transport rates of electrolyte ions and electrons, and a more effective electrochemical reaction of the active material. This facile and rapid synthesis method is a promising route for a large-scale production of graphene-based metal sulfides, which could be used as electrode materials for Li-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL