Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 149(1): 188-195, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38010128

ABSTRACT

Herein, the electrodeposition of paracetamol oxide (PA ox) for the intelligent portable ratiometric detection of nicotine (NIC) and ethyl vanillin ß-D-glucoside (EVG) is reported. PA ox electrodeposited on a screen-printed carbon electrode (SPCE) was used as a new fixed state ratiometric reference probe. A portable electrochemical workstation combined with a smart phone was applied as an intelligent portable electrochemical sensing platform. The sensor was studied by scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FT-IR), ultraviolet-visible spectrophotometry (UV-vis), theoretical calculation, chronoamperometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). Under optimized conditions, the detection range of NIC is 10-200 µmol L-1, and the detection limit is 0.256 µmol L-1. The detection range of EVG was 10-180 µmol L-1, and the detection limit was 0.058 µmol L-1. The sensor can realize the real-time detection of NIC and EVG concentration in cigarette samples quickly and accurately, and has good anti-interference, repeatability and stability.


Subject(s)
Acetaminophen , Nicotine , Oxides , Spectroscopy, Fourier Transform Infrared , Electroplating , Glucosides , Electrodes , Electrochemical Techniques/methods
2.
Sci Adv ; 8(45): eade1731, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36351008

ABSTRACT

Micro/nanoplastic (MNP) contamination in nonmarine waters has evolved into a notable ecotoxicological threat to the global ecosystem. However, existing strategies for MNP removal are typically limited to chemical flocculation or physical filtering that often fails to decontaminate plastic particulates with ultrasmall sizes or ultralow concentrations. Here, we report a self-driven magnetorobot comprising magnetizable ion-exchange resin sphere that can be used to dynamically remove or separate MNPs from nonmarine waters. As a result of the long-range electrophoretic attraction established by recyclable ion-exchange resin, the magnetorobot shows sustainable removal efficiency of >90% over 100 treatment cycles, with verified broad applicability to varying plastic compositions, sizes, and shapes as well as nonmarine water samples. Our work may facilitate industry-scale MNP removal with affordable cost and minimal secondary pollution and suggests an appealing strategy based on self-propelled micro/nanorobots to sample and assess nanoplastics in aqueous environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...