Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 61(2): 357-385, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36434356

ABSTRACT

Networks play an important role in studying structure or functional connection of various brain areas, and explaining mechanism of emotion. However, there is a lack of comprehensive analysis among different construction methods nowadays. Therefore, this paper studies the impact of different emotions on connection of functional brain networks (FBNs) based on electroencephalogram (EEG). Firstly, we defined electrode node as brain area of vicinity of electrode to construct 32-node small-scale FBN. Pearson correlation coefficient (PCC) was used to construct correlation-based FBNs. Phase locking value (PLV) and phase synchronization index (PSI) were utilized to construct synchrony-based FBNs. Next, global properties and effects of emotion of different networks were compared. The difference of synchrony-based FBN concentrates in alpha band, and the number of differences is less than that of correlation-based FBN. Node properties of different small-scale FBNs have significant differences, offering a new basis for feature extraction of recognition regions in emotional FBNs. Later, we made partition of electrode nodes and 10 new brain areas were defined as regional nodes to construct 10-node large-scale FBN. Results show the impact of emotion on network clusters on the right forehead, and high valence enhances information processing efficiency of FBN by promoting connections in brain areas.


Subject(s)
Brain , Emotions , Electroencephalography/methods , Brain Mapping/methods , Electrodes
2.
Sensors (Basel) ; 22(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36081031

ABSTRACT

A brain-computer interface (BCI) translates a user's thoughts such as motor imagery (MI) into the control of external devices. However, some people, who are defined as BCI illiteracy, cannot control BCI effectively. The main characteristics of BCI illiterate subjects are low classification rates and poor repeatability. To address the problem of MI-BCI illiteracy, we propose a distribution adaptation method based on multi-kernel learning to make the distribution of features between the source domain and target domain become even closer to each other, while the divisibility of categories is maximized. Inspired by the kernel trick, we adopted a multiple-kernel-based extreme learning machine to train the labeled source-domain data to find a new high-dimensional subspace that maximizes data divisibility, and then use multiple-kernel-based maximum mean discrepancy to conduct distribution adaptation to eliminate the difference in feature distribution between domains in the new subspace. In light of the high dimension of features of MI-BCI illiteracy, random forest, which can effectively handle high-dimensional features without additional cross-validation, was employed as a classifier. The proposed method was validated on an open dataset. The experimental results show that that the method we proposed suits MI-BCI illiteracy and can reduce the inter-domain differences, resulting in a reduction in the performance degradation of both cross-subjects and cross-sessions.


Subject(s)
Brain-Computer Interfaces , Algorithms , Electroencephalography/methods , Humans , Imagery, Psychotherapy , Learning , Literacy
3.
J Healthc Eng ; 2021: 9376662, 2021.
Article in English | MEDLINE | ID: mdl-34413970

ABSTRACT

Respiratory diseases including apnea are often accompanied by abnormal respiratory depth, frequency, and rhythm. If different abnormal respiratory patterns can be detected and recorded, with their depth, frequency, and rhythm analyzed, the detection and diagnosis of respiratory diseases can be achieved. High-frequency millimeter-wave radar (76-81 GHz) has low environmental impact, high accuracy, and small volume, which is more suitable for respiratory signal detection and recognition compared with other contact equipment. In this paper, the experimental platform of frequency-modulated continuous wave (FMCW) radar was built at first, realizing the noncontact measurement of vital signs. Secondly, the energy intensity and threshold of respiration signal during each period were calculated by using the rectangular window, and the accurate judgment of apnea was realized via numerical comparison. Thirdly, the features of respiratory and heart rate signals, the number of peaks and valleys, the difference between peaks and valleys, the average and the standard deviation of normalized short-term energy, and the average and the standard deviation and the minimum of instantaneous frequency, were extracted and analyzed. Finally, support vector machine (SVM) and K-nearest neighbor (KNN) were used to classify the extracted features, and the accuracy was 98.25% and 88.75%, respectively. The classification and recognition of respiratory patterns have been successfully realized.


Subject(s)
Radar , Signal Processing, Computer-Assisted , Algorithms , Humans , Respiratory Rate , Technology , Vital Signs
SELECTION OF CITATIONS
SEARCH DETAIL
...