Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Cancer Lett ; 586: 216611, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38309617

ABSTRACT

Pancreatic cancer (PC) is one of the most malignant and deadly tumors of digestive system with complex etiology and pathogenesis. Dysregulations of oncogenes and tumor suppressors due to epigenetic modifications causally affect tumorogenesis; however the key tumor suppressors and their regulations in PC are only partially defined. In this study, we found that Claudin-1 (encoded by CLDN1 gene) was significantly suppressed in PC that correlated with a poor clinical prognosis. Claudin-1 knockdown enhanced PC cell proliferation, migration, and stemness. Pancreatic specific Cldn1 knockout in KPC (LSLKrasG12D/Pdx1-Cre/Trp53R172H+) and KC (LSLKrasG12D/Pdx1-Cre) mice reduced mouse survival, promoted acinar-to-ductal metaplasia (ADM) process, and accelerated the development of pancreatic intraepithelial neoplasia (PanIN) and PC. Further investigation revealed that Claudin-1 suppression was mainly caused by aberrant DNA methylatransferase 1 (DNMT1) and DNMT3A elevations and the resultant CLDN1 promoter hypermethylation, as a DNMT specific inhibitor SGI-1027 effectively reversed the Claudin-1 suppression and inhibited PC progression both in vitro and in vivo in a Claudin-1 preservation-dependent manner. Together, our data suggest that Claudin-1 functions as a tumor suppressor in PC and its epigenetic suppression due to DNMT aberrations is a crucial event that promotes PC development and progression.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Carcinoma, Pancreatic Ductal/pathology , Claudin-1/genetics , Disease Progression , Pancreas/pathology , Pancreatic Neoplasms/pathology
2.
Redox Biol ; 68: 102939, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890360

ABSTRACT

Acute kidney injury (AKI) progression to chronic kidney disease (CKD) represents a unique renal disease setting characterized by early renal cellular injury and regulated cell death, and later renal fibrosis, of which the critical role and nature of ferroptosis are only partially understood. Here, we report that renal tubular epithelial ferroptosis caused by HDAC3 (histone deacetylase 3) aberration and the resultant GPX4 suppression drives AKI-CKD progression. In mouse models of AKI-CKD transition induced by nephrotoxic aristolochic acid (AA) and folic acid (FA), renal tubular epithelial ferroptosis occurred early that coincided with preferential HDAC3 elevation and marked suppression of a core anti-ferroptosis enzyme GPX4 (glutathione peroxidase 4). Intriguingly, genetic Hdac3 knockout or administration of a HDAC3-selective inhibitor RGFP966 effectively mitigated the GPX4 suppression, ferroptosis and the fibrosis-associated renal functional loss. In cultured tubular epithelial cells, HDAC3 over-expression or inhibition inversely affected GPX4 abundances. Further analysis revealed that Gpx4 promoter contains a typical binding motif of transcription factor KLF5 (Kruppel-like factor 5). HDAC3 and KLF5 inducibly associated and bound to Gpx4 promoter upon AA treatment, leading to local histone hypoacetylation and GPX4 transactivation inhibition, which was blocked by RGFP966 and a KLF5 inhibitor ML264, respectively, suggesting that KLF5 co-regulated the HDAC3-incurred Gpx4 transcription inhibition. More importantly, in AKI-CKD mice receiving a GPX4 inactivator RSL3, the anti-ferroptosis and renoprotective effects of RGFP966 were largely abrogated, indicating that GPX4 is an essential downstream mediator of the HDAC3 aberration and renal ferroptosis during AKI-CKD transition. Together, our study identified a critical epigenetic pathway of ferroptosis during AKI-CKD transition and suggested that the strategies preserving GPX4 by HDAC3 inhibition are potentially effective to reduce renal ferroptosis and slow AKI-CKD progression.


Subject(s)
Acute Kidney Injury , Ferroptosis , Renal Insufficiency, Chronic , Animals , Mice , Acute Kidney Injury/etiology , Ferroptosis/genetics , Kidney/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/metabolism , Disease Progression
3.
Cell Rep ; 42(9): 113090, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37669164

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine disorder and the main cause of anovulatory infertility, in which persistent activation of androgen receptor (AR) due to aberrant acetylation modifications of transcription is a potential trigger; however, the precise mechanisms of AR activation are poorly understood. In this study, AR activation in dehydroepiandrosterone- and letrozole-induced rat PCOS ovaries coincided with a marked increase of a chromatin acetylation "reader" BRD4. Further bioinformatic analysis showed that the AR promoter contained highly conserved binding motifs of BRD4 and HIF-1α. BRD4 and HIF-1α inducibly bound to the histone 3/4 acetylation-modified AR promoter, while administration of a BRD4-selective inhibitor JQ1 reduced the binding and AR transcription and improved the adverse expression of the core fibrotic mediators in PCOS ovaries and DHT-treated granulosa cells. Our data indicate that BRD4 upregulation and the resultant AR transcriptional activation constitute an important regulatory pathway that promotes ovarian fibrosis in PCOS.


Subject(s)
Polycystic Ovary Syndrome , Receptors, Androgen , Animals , Female , Humans , Rats , Cell Cycle Proteins , Fibrosis , Nuclear Proteins/genetics , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Transcription Factors/genetics
4.
Biomed J ; : 100651, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37562773

ABSTRACT

BACKGROUND: Dysregulation of long non-coding RNAs (lncRNAs) is an important component of tumorigenesis. Aberrant expression of lncRNA taurine upregulated gene 1 (lncTUG1) has been reported in various tumors; however, its precise role and key targets critically involved in osteosarcoma (OS) progression remains unclear. METHODS: The expression profiles of lncRNAs and its regulated miRNAs related to OS progression were assessed by bioinformatics analysis and confirmed by qRT-PCR of OS cells. The miRNA targets were identified by transcriptome sequencing and verified by luciferase reporter and RNA pull-down assays. Several in vivo and in vitro approaches, including CCK8 assay, western blot, qRT-PCR, lentiviral transduction and OS cell xenograft mouse model were established to validate the effects of lncTUG1 regulation of miRNA and the downstream target genes on OS cell growth, apoptosis and progression. RESULTS: We found that lncTUG1 and miR-26a-5p were inversely up or down-regulated in OS cells, and siRNA-mediated lncTUG1 knockdown reversed the miR-26a-5p down-regulation and suppressed proliferation and enhanced apoptosis of OS cells. Further, we identified that an oncoprotein ZBTB7C was also upregulated in OS cells that were subjected to lncTUG1/miR-26a-5p regulation. More importantly, ZBTB7C knockdown reduced the ZBTB7C upregulation and ZBTB7C overexpression diminished the anti-OS effects of lncTUG1 knockdown in the OS xenograft model. CONCLUSIONS: Our data suggest that lncTUG1 acts as a miR-26a-5p sponge and promotes OS progression via up-regulating ZBTB7C, and targeting lncTUG1 might be an effective strategy to treat OS.

5.
Transl Res ; 259: 62-71, 2023 09.
Article in English | MEDLINE | ID: mdl-37121538

ABSTRACT

Aberrant N6-methyladenosine (m6A) modification of mRNAs contributes significantly to the epigenetic tumorigenesis, however, its precise role and the key targets in osteosarcoma (OS) are not defined. Here we reported that selective METTL3 (methyltransferase like 3) elevation and the consequential increase of m6A modification causally affect OS progression. The fast-growing OS cells displayed preferential upregulation of METTL3 and increased m6A modification. Conversely, m6A inhibition by 3-deazaadenosine, siRNA-mediated METTL3 knockdown or a METTL3-selective inhibitor STM2457 effectively inhibits OS cell growth and induced OS cell apoptosis. Further investigation revealed that an oncogenic protein ZBTB7C was likely a critical m6A target that mediated the oncogenic effects. ZBTB7C mRNA contains a typical m6A motif of high confidence and its mRNA and protein were enriched with increased m6A modification in OS samples/cells. In an OS xenograft model, STM2457 or siRNA-mediated METTL3 knockdown effectively lowed ZBTB7C abundance. More importantly, the anti-OS effects of STM2457 were significantly reduced when ZBTB7C was overexpressed by lentivirus. Together, our results demonstrate that the METTL3 aberration and the resultant ZBTB7C m6A modification form an important epigenetic regulatory loop that promotes OS progression, and targeting the METTL3/ZBTB7C axis may provide novel insights into the potential strategies for OS therapy.


Subject(s)
Methyltransferases , Osteosarcoma , Humans , Intracellular Signaling Peptides and Proteins , Methyltransferases/genetics , Methyltransferases/metabolism , Osteosarcoma/genetics , RNA, Messenger/genetics , RNA, Small Interfering
6.
J Clin Lipidol ; 16(5): 626-634, 2022.
Article in English | MEDLINE | ID: mdl-36064883

ABSTRACT

BACKGROUND: GPIHBP1, a glycolipid-anchored protein of capillary endothelial cells, is a crucial partner for lipoprotein lipase (LPL) in plasma triglyceride metabolism. GPIHBP1 autoantibodies block LPL binding to GPIHBP1 and lead to severe hypertriglyceridemia (HTG) and HTG-induced acute pancreatitis (HTG-AP). We sought to define the incidence of GPIHBP1 autoantibodies in patients with HTG-AP. OBJECTIVE: We determined the incidence of GPIHBP1 autoantibody in HTG-AP patients, and compared the clinical features and long-term outcomes between GPIHBP1 autoantibody-positive and negative groups. METHODS: An enzyme-linked immunosorbent assay was used to screen for GPIHBP1 autoantibody in 116 HTG-AP patients hospitalized from Jan 1, 2015 to Aug 31, 2019. All patients were followed up for 24 months. The primary outcome was the recurrence rate of HTG-AP during the two-year follow-up period. The incidence of recurrent episodes was analyzed by the Kaplan-Meier method and multivariable Cox regression was used to identify risk factors. RESULTS: GPIHBP1 autoantibodies were present in 17 of 116 study patients (14.66%). The 2-year recurrence rate of HTG-AP was much higher in the GPIHBP1 autoantibody-positive group (35%, 6 in 17) than in the negative group (4%, 4 in 99). The multivariable Cox regression analysis showed that GPIHBP1 autoantibody was an independent risk factor for HTG-AP recurrence in two years. CONCLUSIONS: The presence of GPIHBP1 autoantibody is common in patients with HTG-AP, and is an independent risk factor for two-year recurrence of HTG-AP.


Subject(s)
Hypertriglyceridemia , Pancreatitis , Receptors, Lipoprotein , Humans , Pancreatitis/etiology , Acute Disease , Endothelial Cells , Risk Factors , Autoantibodies
7.
Biomaterials ; 288: 121742, 2022 09.
Article in English | MEDLINE | ID: mdl-36030105

ABSTRACT

Aseptic metal implant loosening due to wear particle-induced bone damage is a major complication of total joint arthroplasty often leading to revision surgery, of which the key regulators mediating the processes are not clearly defined. Here we reported that in a mouse model of calvarial osteolysis, titanium particles (TiPs) and cobalt-chromium-molybdenum particles induced severe osteolysis accompanied by marked suppression of a master redox transcriptional factor NRF2 (Nuclear factor erythroid derived 2-related factor 2). Nfe2l2 knockout mice treated with TiPs developed worse osteolytic alterations compared with wild-type mice. On the contrary, NRF2 restoration by an NRF2 agonist TBHQ (tert-butylhydroquinone) effectively alleviated the osteolysis and the abnormal expression of NRF2 downstream antioxidant enzymes, inflammatory cytokines and osteogenic factors. Further, TiPs induced adverse osteoblastogenesis and osteoclastogenesis in cultured bone cells, which were substantially blocked by TBHQ in an NRF2 inhibition-sensitive manner. Consistently, the osteoprotective effects of TBHQ observed in wild-type mice were largely limited in Nfe2l2 knockout mice. Collectively, our data suggest that NRF2 suppression is a critical causal event of metal wear particle-incurred osteolysis, and the strategies reinstating NRF2 are effective to lessen the bone damage and potentially reduce the incidence of metal implant loosening.


Subject(s)
NF-E2-Related Factor 2 , Osteolysis , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Osteoclasts/metabolism , Osteolysis/chemically induced , Prostheses and Implants/adverse effects , Titanium/adverse effects
8.
FEBS J ; 289(23): 7545-7560, 2022 12.
Article in English | MEDLINE | ID: mdl-35792704

ABSTRACT

Lipid-laden macrophages are considered as the main source of foam cells in atherosclerosis; however, the mechanism for macrophage foam cell formation remains unknown. Here, we explore the mechanism behind foam cell formation to potentially identify a novel treatment for atherosclerosis. Our data demonstrated that leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) increased in the atherosclerotic plaques of LDLR-/- mice fed with a Western diet. LRPPRC was also upregulated in mice peritoneal macrophages and RAW 264.7 cells treated with oxidative low density lipoprotein, whereas knockdown of LRPPRC by transfecting with small interfering (Si)-LRPPRC in RAW 264.7 cells decreased foam cell formation. Furthermore, Si-LRPPRC promoted autophagy and increased the expression of cholesterol efflux protein ATP-binding cassette transporter A1 in RAW 264.7 cells. Moreover, intervention with MHY1485 in RAW 264.7 cells revealed that autophagy was inhibited by LRPPRC via the Akt-mechanistic target of rapamycin pathway. Taken together, we confirm for the first time that LRPPRC is increased within the atherosclerotic plaques of mice and enhances the process of foam cell formation. The knockdown of LRPPRC inhibited foam cell formation by activating macrophage autophagy. Our findings indicate that the regulation of macrophage LRPPRC expression may be a novel strategy for ameliorating atherosclerosis.


Subject(s)
Foam Cells , Leucine-Rich Repeat Proteins , Autophagy/genetics
9.
Antioxid Redox Signal ; 37(1-3): 40-53, 2022 07.
Article in English | MEDLINE | ID: mdl-35196878

ABSTRACT

Aims: The pathogenesis of osteoarthritis (OA) is characterized by oxidative stress (OS) and sustained inflammation that are substantially associated with epigenetic DNA methylation alterations of osteogenic gene expression. Diacerein as an anthraquinone anti-OA drug exhibits multiple chondroprotective properties, but less clarified pharmacological actions. Since anthraquinone contain an epigenetic modulating property, in this study we investigate whether the anti-OA functions of diacerein involve DNA methylation modulation and antioxidant signaling. Results: The OA mice incurred by destabilization of medial meniscus exhibited marked suppression of peroxisome proliferator-activated receptor-gamma (PPARγ), a chondroprotective transcription factor with anti-inflammation and OS-balancing properties, aberrant upregulations of DNA methyltransferase (DNMT)1/3a, and PPARγ promoter hypermethylation in knee joint cartilage. Diacerein treatment mitigated the cartilage damage and significantly inhibited the DNMT1/3a upregulation, the PPARγ promoter hypermethylation, and the PPARγ loss, and it effectively corrected the adverse expression of antioxidant enzymes and inflammatory cytokines. In cultured chondrocytes, diacerein reduced the interleukin-1ß-induced PPARγ suppression and the abnormal expression of its downstream antioxidant enzymes in a gain of DNMT and PPARγ inhibition-sensitive manner, and in PPARγ knockout mice, the anti-OA effects of diacerein were significantly reduced. Innovation: Our work reveals a novel anti-OA pharmacological property of diacerein and identifies the aberrant DNMT elevation and the resultant PPARγ suppression as an important epigenetic pathway that mediates diacerein's anti-OA activities. Conclusion: DNA methylation aberration and the resultant PPARγ suppression contribute significantly to epigenetic OA pathogenesis, and targeting PPARγ suppression via DNA demethylation is an important component of diacerein's anti-OA functions. Antioxid. Redox Signal. 37, 40-53.


Subject(s)
Osteoarthritis , PPAR gamma , Animals , Anthraquinones/pharmacology , Anthraquinones/therapeutic use , Antioxidants/metabolism , Epigenesis, Genetic , Mice , Mice, Knockout , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , Oxidative Stress , PPAR gamma/metabolism
10.
J Mol Med (Berl) ; 100(1): 43-51, 2022 01.
Article in English | MEDLINE | ID: mdl-34698870

ABSTRACT

Development and progression of many kidney diseases are substantially influenced by aberrant protein acetylation modifications of gene expression crucial for kidney functions. Histone deacetylase (HDAC) expression alterations are detected from renal samples of patients and animal models of various kidney diseases, and the administrations of HDAC inhibitors display impressive renal protective effects in vitro and in vivo. However, when the expression alterations of multiple HDACs occur, not all the HDACs causally affect the disease onset or progression. Identification of a single HDAC as a disease-causing factor will allow subtype-targeted intervention with less side effect. HDAC3 is a unique HDAC with distinct structural and subcellular distribution features and co-repressor dependency. HDAC3 is required for kidney development and its aberrations actively participate in many pathological processes, such as cancer, cardiovascular diseases, diabetes, and neurodegenerative disorders, and contribute significantly to the pathogenesis of kidney diseases. This review will discuss the recent studies that investigate the critical roles of HDAC3 aberrations in kidney development, renal aging, renal cell carcinoma, renal fibrosis, chronic kidney disease, polycystic kidney disease, glomerular podocyte injury, and diabetic nephropathy. These studies reveal the distinct characters of HDAC3 aberrations that act on different molecules/signaling pathways under various renal pathological conditions, which might shed lights into the epigenetic mechanisms of renal diseases and the potentially therapeutic strategies.


Subject(s)
Histone Deacetylases/genetics , Kidney Diseases/genetics , Animals , Epigenesis, Genetic , Histone Deacetylases/metabolism , Humans , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology
11.
Br J Pharmacol ; 179(7): 1304-1318, 2022 04.
Article in English | MEDLINE | ID: mdl-34378791

ABSTRACT

BACKGROUND AND PURPOSE: Development of pulmonary fibrosis is associated with altered DNA methylation modifications of fibrogenic gene expression. However, their causal relationships and the underlying mechanisms remain unclear. This study investigates the critical role of DNA methylation aberration-associated suppression of peroxisome proliferator-activated receptor-γ (PPARγ) in pulmonary fibrosis. EXPERIMENTAL APPROACH: Expression of PPARγ and bioactive DNA methyltransferases (DNMTs) and PPARγ promoter methylation status were examined in fibrotic lungs of idiopathic pulmonary fibrosis (IPF) patients and bleomycin (Blm)-treated mice. DNA demethylating agent 5-aza-2'-deoxycytidine (5aza) and glycyrrhizic acid (GA) derived from medicinal plant were assessed for their PPARγ de-repression and anti-pulmonary fibrosis activities. PPARγ knockout mice were created to determine the critical role of PPARγ in this protection. KEY RESULTS: Lung PPARγ expression was markedly suppressed in IPF patients and Blm mice, accompanied by increased DNMT 1/DNMT3a and PPARγ promoter hypermethylation. Administration of 5-aza and GA similarly demethylated PPARγ promoter, restored PPARγ loss and alleviated fibrotic lung pathologies, including structural alterations and adverse expression of fibrotic mediators and inflammatory cytokines. In cultured lung fibroblasts and alveolar epithelial cells, GA alleviated PPARγ-mediated suppression of fibrosis in a gain of DNMT-sensitive manner, and in PPARγ knockout mice, the anti-fibrotic effects of 5aza and GA were significantly reduced, suggesting that PPARγ is a critical mediator of epigenetic pulmonary fibrogenesis. CONCLUSION AND IMPLICATIONS: Aberrant DNMT1/3a elevations and the resultant PPARγ suppression contribute significantly to the development of pulmonary fibrosis, and strategies targeting DNMT/PPARγ axis with synthetic or natural compounds might benefit patients with pulmonary fibrotic disorders.


Subject(s)
DNA Methylation , Idiopathic Pulmonary Fibrosis , Animals , Azacitidine/metabolism , Azacitidine/pharmacology , Bleomycin , Fibroblasts/metabolism , Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , PPAR gamma/genetics , PPAR gamma/metabolism , Promoter Regions, Genetic
12.
Acta Pharmacol Sin ; 43(7): 1793-1802, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34754093

ABSTRACT

Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease with few treatment options. The pathogenesis of OA is characterized by sustained inflammation, oxidative stress and chondrocyte apoptosis that eventually lead to cartilage degradation and joint dysfunction. In the present study, we identified a synthetic triterpenoid CDDO-Im(1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole) as an activator of Nrf2 (nuclear factor erythroid 2-related factor 2) that displayed strong anti-OA effects. We showed that CDDO-Im (20 nM) significantly alleviated TNF-α-induced apoptosis of primary human chondrocytes and extracellular matrix degradation. In a mouse OA model incurred by DMM (destabilization of medial meniscus), administration of CDDO-Im (2.5 mg/kg, ip, every other day for 8 weeks) effectively reduced knee joint cartilage erosion and serum levels of inflammatory cytokines IL-1ß and IL-6. We revealed that CDDO-Im (20 nM) significantly enhanced autophagy activities in chondrocytes, whereas the autophagy inhibition by chloroquine (CQ, 50 µM) or 3-methyladenine (3-MA, 5 mM) abrogated the anti-apoptosis and chondroprotective effects of CDDO-Im in TNF-α-treated chondrocytes. Moreover, we confirmed that CDDO-Im (1-20 nM) dose-dependently activated Nrf2 pathway in TNF-α-treated chondrocytes, and its chondroprotective and autophagy-enhancing effects were significantly diminished when Nrf2 signaling was blocked by Nrf2 inhibitor ML385 (20 µM) or siRNA-mediated Nrf2 knockdown. Together, our results demonstrate that CDDO-Im exhibits prominent chondroprotective and anti-OA activities owing to its Nrf2 activation and autophagy-enhancing properties, which might provide new insights into the strategies of OA clinical prevention and treatment.


Subject(s)
NF-E2-Related Factor 2 , Osteoarthritis , Animals , Mice , Autophagy , Chondrocytes , Imidazoles/pharmacology , NF-E2-Related Factor 2/metabolism , Oleanolic Acid/analogs & derivatives , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Tumor Necrosis Factor-alpha/pharmacology
13.
Aging Cell ; 21(1): e13526, 2022 01.
Article in English | MEDLINE | ID: mdl-34874096

ABSTRACT

DNA methylation alterations play mechanistic roles in aging; however, the epigenetic regulators/mediators causally involved in renal aging remain elusive. Here, we report that natural and D-galactose (D-gal)-induced aging kidneys display marked suppression of antiaging factor NRF2 (nuclear factor erythroid-derived 2-like 2) and KLOTHO, accompanied by upregulations of DNA methyltransferase (DNMT) 1/3a/3b and NRF2/KLOTHO gene promoter hypermethylations. Administration of a DNMT inhibitor SGI-1072 effectively hypomethylated the promoters, derepressed NRF2/KLOTHO, and mitigated the structural and functional alterations of renal aging in D-gal mice. Moreover, oleuropein (OLP), an olive-derived polyphenol, also displayed similar epigenetic modulation and antiaging effects. OLP inhibited the epigenetic NRF2/KLOTHO suppressions in a gain of DNMT-sensitive manner in cultured renal cells, demonstrating a strong DNA-demethylating capacity. In NRF2 knockout and KLOTHO knockdown D-gal mice, OLP exhibited reduced antiaging effects with KLOTHO displaying a prominent gene effect and effect size; consistently in KLOTHO knockdown mice, the antiaging effects of SGI-1027 were largely abrogated. Therefore, the KLOTHO recovery is critical for the antiaging effects of DNA demethylation. Collectively, our data indicate that aberrant DNMT1/3a/3b elevations and the resultant suppression of antiaging factors contribute significantly to epigenetic renal aging, which might be targeted for epigenetic intervention by synthetic or natural DNA-demethylating agents.


Subject(s)
Antioxidants/metabolism , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Epigenomics/methods , Kidney/pathology , Aging , Animals , Disease Models, Animal , Mice , DNA Methyltransferase 3B
14.
Antioxidants (Basel) ; 12(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36670963

ABSTRACT

Glutathione peroxidase 4 (GPX4)-dependent ferroptosis in pancreatic acinar cells plays a critical role in acute pancreatitis (AP). However, potential upstream regulators of GPX4 are not well defined. Here, we observed a marked reduction in acinar GPX4 expression and ferroptotic cell death in mice with cerulein-induced AP. To determine the critical factors involved in acinar cell ferroptosis, pancreas transcriptome data from an AP mouse model were analyzed and overlapped with predicted transcription factors of Gpx4, and an upregulated transcription factor active protein 1 (AP-1) protein, Jun, was identified. The administration of a specific ferroptosis inhibitor liproxstatin-1 alleviated AP pathology and significantly decreased Jun levels. Bioinformatic analysis indicated that the Gpx4 promoter contains a putative AP-1 binding site. Jun binds directly to the Gpx4 promoter and inhibits Gpx4 transcription under pancreatic conditions. AP-1 inhibition by a selective inhibitor SR11302 reversed GPX4 reduction and ameliorated AP pathology in a GPX4-dependent manner. Collectively, our study demonstrates that the downregulation of GPX4 by AP-1 is critical in the aggravation of acinar cell ferroptosis during the progression of AP. Strategies targeting the AP-1/GPX4 axis may be potentially effective for the prevention and treatment of AP.

15.
Br J Pharmacol ; 178(22): 4485-4500, 2021 11.
Article in English | MEDLINE | ID: mdl-34265073

ABSTRACT

BACKGROUND AND PURPOSE: Cancer cachexia is a common cause of death among cancer patients with no currently effective treatment available. In animal models, aberrant activation of STAT3 in skeletal muscle contributes to muscle wasting. However, clinically the factors regulating STAT3 activation and the molecular mechanisms involved remain incompletely understood. EXPERIMENTAL APPROACH: The expression of HSP90 and the activation of STAT3 were detected in muscle from the patients with cancer cachexia or the tumour-bearing cachectic mice. HSP90 inhibitors, including 17DMAG (alvespimycin) and PU-H71, were administered to cachexic mice and cachexia parameters, weight loss, food intake, survival rate, body composition, serum metabolites, muscle wasting pathology and catabolic activation were analysed. The co-culture of C2C12 myotube cells with C26 conditioned media was performed to investigate the pathological mechanism involved in catabolic muscle wasting. The roles of HSP90, STAT3 and FOXO1 in myotube atrophy were explored via overexpression or knockdown. RESULTS: An enhanced interaction between activated STAT3 and HSP90 in the skeletal muscle of cancer cachexia patients, is a crucial for the development of cachectic muscle wasting. HSP90 inhibitors 17DMAG and PU-H71 alleviated the muscle wasting in C26 and models or the myotube atrophy of C2C12 cells induced by C26 conditional medium. Prolonged STAT3 activation transactivated FOXO1 by binding directly to its promoter and triggered the muscle wasting in a FOXO1-dependent manner in muscle cells. CONCLUSION AND IMPLICATIONS: The HSP90/STAT3/FOXO1 axis plays a critical role in cachectic muscle wasting, which might be a potential therapeutic target for the treatment of cancer cachexia.


Subject(s)
Cachexia , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Neoplasms , STAT3 Transcription Factor , Animals , Cachexia/drug therapy , Cachexia/etiology , Humans , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , STAT3 Transcription Factor/metabolism
17.
Cell Death Dis ; 12(7): 652, 2021 06 26.
Article in English | MEDLINE | ID: mdl-34175899

ABSTRACT

Cancer cachexia is a multifactorial metabolic syndrome that causes up to 20% of cancer-related deaths. Muscle atrophy, the hallmark of cancer cachexia, strongly impairs the quality of life of cancer patients; however, the underlying pathological process is still poorly understood. Investigation of the disease pathogenesis largely relies on cachectic mouse models. In our study, the transcriptome of the cachectic gastrocnemius muscle in the C26 xenograft model was integrated and compared with that of 5 more different datasets. The bioinformatic analysis revealed pivotal gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the disease, and the key genes were validated. Construction of the protein-protein interaction network and the comparison of pathways enriched in cancer cachexia with 5 other muscle atrophy models revealed Ddit4 (DNA damage-inducible transcript 4), as a key protein in cancer cachexia. The higher expression of Ddit4 in cachectic muscle was further validated in animal models and cachectic cancer patients. Further study revealed that p38 induced the expression of Ddit4, which in turn inhibited the mTOR pathway in atrophic cells.


Subject(s)
Adenocarcinoma/complications , Cachexia/genetics , Colonic Neoplasms/complications , Gene Expression Profiling , Muscle, Skeletal/metabolism , Transcription Factors/genetics , Transcriptome , Animals , Cachexia/etiology , Cachexia/metabolism , Cachexia/pathology , Cell Line, Tumor , Databases, Genetic , Disease Models, Animal , Gene Regulatory Networks , Humans , Male , Mice, Inbred BALB C , Muscle, Skeletal/pathology , Phosphorylation , Protein Interaction Maps , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Bone Res ; 9(1): 15, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33637693

ABSTRACT

Osteoporosis (OP) is a common skeletal disease involving low bone mineral density (BMD) that often leads to fragility fracture, and its development is affected by multiple cellular pathologies and associated with marked epigenetic alterations of osteogenic genes. Proper physical exercise is beneficial for bone health and OP and reportedly possesses epigenetic modulating capacities; however, whether the protective effects of exercise on OP involve epigenetic mechanisms is unclear. Here, we report that epigenetic derepression of nuclear factor erythroid derived 2-related factor-2 (Nrf2), a master regulator of oxidative stress critically involved in the pathogenesis of OP, mediates the significant osteoprotective effects of running exercise (RE) in a mouse model of OP induced by ovariectomy. We showed that Nrf2 gene knockout (Nfe2l2-/-) ovariectomized mice displayed a worse BMD reduction than the controls, identifying Nrf2 as a critical antiosteoporotic factor. Further, femoral Nrf2 was markedly repressed with concomitant DNA methyltransferase (Dnmt) 1/Dnmt3a/Dnmt3b elevations and Nrf2 promoter hypermethylation in both patients with OP and ovariectomized mice. However, daily 1-h treadmill RE significantly corrected epigenetic alterations, recovered Nrf2 loss and improved the femur bone mass and trabecular microstructure. Consistently, RE also normalized the adverse expression of major osteogenic factors, including osteoblast/osteoclast markers, Nrf2 downstream antioxidant enzymes and proinflammatory cytokines. More importantly, the RE-conferred osteoprotective effects observed in the wild-type control mice were largely abolished in the Nfe2l2-/- mice. Thus, Nrf2 repression due to aberrant Dnmt elevation and subsequent Nrf2 promoter hypermethylation is likely an important epigenetic feature of the pathogenesis of OP, and Nrf2 derepression is essential for the antiosteoporotic effects of RE.

19.
J Mol Med (Berl) ; 99(5): 581-592, 2021 05.
Article in English | MEDLINE | ID: mdl-33547909

ABSTRACT

Developments of many renal diseases are substantially influenced by epigenetic modifications of numerous genes, mainly mediated by DNA methylations, histone modifications, and microRNA interference; however, not all gene modifications causally affect the disease onset or progression. Klotho is a critical gene whose repressions in various pathological conditions reportedly involve epigenetic regulatory mechanisms. Klotho is almost unexceptionally repressed early after acute or chronic renal injuries and its levels inversely correlated with the disease progression and severity. Moreover, the strategies of Klotho derepression via epigenetic modulations beneficially change the pathological courses both in vitro and in vivo. Hence, Klotho is not only considered a biomarker of the renal disease but also a potential or even an ideal target of therapeutic epigenetic intervention. Here, we summarize and discuss studies that investigate the Klotho repression and intervention in renal diseases from an epigenetic point of view. These information might shed new sights into the effective therapeutic strategies to prevent and treat various renal disorders.


Subject(s)
Epigenesis, Genetic , Kidney Diseases/genetics , Kidney Diseases/metabolism , Klotho Proteins/genetics , Klotho Proteins/metabolism , Animals , Biomarkers/metabolism , DNA Methylation/genetics , Disease Progression , Histone Code/genetics , Humans , Mice , MicroRNAs/genetics , Promoter Regions, Genetic
20.
Cell Death Differ ; 28(3): 1001-1012, 2021 03.
Article in English | MEDLINE | ID: mdl-33024274

ABSTRACT

Development of renal fibrosis is a hallmark of renal aging and chronic kidney disease of all etiologies and characterized by extensive renal cell injuries and subsequent myofibroblast transdifferentiations (MTDs), which are significantly influenced by aberrant histone deacetylase (HDAC) activities. However, the key HDAC isoforms and effectors that are causally involved in the processes remain poorly understood. Here, we report that aberrant HDAC3 induction and its inhibition of Klotho, a renal epithelium-enriched aging suppressor, contribute significantly to renal fibrogenesis. HDAC3 was preferentially elevated with concomitant Klotho suppression in fibrotic kidneys incurred by unilateral ureter obstruction (UUO) and aristolochic acid nephropathy (AAN), whereas Hdac3 knockout resisted the fibrotic pathologies. The HDAC3 elevation is substantially blocked by the inhibitors of TGFß receptor and Smad3 phosphorylation, suggesting that TGFß/Smad signal activates Hdac3 transcription. Consistently, an HDAC3-selective inhibitor RGFP966 derepressed Klotho and mitigated the renal fibrotic injuries in both UUO and AAN mice. Further, HDAC3 overexpression or inhibition in renal epithelia inversely affected Klotho abundances and HDAC3 was inducibly associated with transcription regulators NCoR and NF-kB and bound to Klotho promoter in fibrotic kidney, supporting that aberrant HDAC3 targets and transcriptionally inhibits Klotho under renal fibrotic conditions. More importantly, the antirenal fibrosis effects of RGFP966 were largely compromised in mice with siRNA-mediated Klotho knockdown. Hence, HDAC3 aberration and the subsequent Klotho suppression constitute an important regulatory loop that promotes MTD and renal fibrosis and uses of HDAC3-selective inhibitors are potentially effective in treating renal fibrotic disorders.


Subject(s)
Acrylamides/pharmacology , Histone Deacetylases/metabolism , Kidney Diseases/metabolism , Phenylenediamines/pharmacology , Ureteral Obstruction/metabolism , Animals , Aristolochic Acids , Enzyme Inhibitors/pharmacology , Fibrosis , HEK293 Cells , Histone Deacetylases/genetics , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Diseases/pathology , Klotho Proteins , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Transforming Growth Factor beta/metabolism , Ureteral Obstruction/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...