Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
2.
J Psychiatr Res ; 175: 461-469, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38820996

ABSTRACT

BACKGROUND: Impaired cognition has been demonstrated in pediatric bipolar disorder (PBD). The subcortical limbic structures play a key role in PBD. However, alternations of anatomical and functional characteristics of subcortical limbic structures and their relationship with neurocognition of PBD remain unclear. METHODS: Thirty-six PBD type I (PBD-I) (15.36 ± 0.32 years old), twenty PBD type II (PBD-II) (14.80 ± 0.32 years old) and nineteen age-gender matched healthy controls (HCs) (14.16 ± 0.36 years old) were enlisted. Primarily, the volumes of the subcortical limbic structures were obtained and differences in the volumes were evaluated. Then, these structures served as seeds of regions of interest to calculate the voxel-wised functional connectivity (FC). After that, correlation analysis was completed between volumes and FC of brain regions showing significant differences and neuropsychological tests. RESULTS: Compared to HCs, both PBD-I and PBD-II patients showed a decrease in the Stroop color word test (SCWT) and digit span backward test scores. Compared with HCs, PBD-II patients exhibited a significantly increased volume of right septal nuclei, and PBD-I patients presented increased FC of right nucleus accumbens and bilateral pallidum, of right basal forebrain with right putamen and left pallidum. Both the significantly altered volumes and FC were negatively correlated with SCWT scores. SIGNIFICANCE: The study revealed the role of subcortical limbic structural and functional abnormalities on cognitive impairments in PBD patients. These may have far-reaching significance for the etiology of PBD and provide neuroimaging clues for the differential diagnosis of PBD subtypes. CONCLUSIONS: Distinctive features of neural structure and function in PBD subtypes may contribute to better comprehending the potential mechanisms of PBD.

3.
J Pharm Anal ; 14(2): 225-243, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38464790

ABSTRACT

Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment.

4.
iScience ; 27(3): 109041, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38361626

ABSTRACT

Patients with neurodegenerative diseases exhibit diminished basal forebrain (BF) volume compared to healthy individuals. However, it's uncertain whether this difference is consistent between sexes. It has been reported that BF volume moderately atrophies during aging, but the effect of sex on BF volume changes during the normal aging process remains unclear. In the cross-sectional study, we observed a significant reduction in BF volume in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) compared to Healthy Controls (HCs), especially in the Ch4 subregion. Notably, significant differences in BF volume between MCI and HCs were observed solely in the female group. Additionally, we identified asymmetrical atrophy in the left and right Ch4 subregions in female patients with AD. In the longitudinal analysis, we found that aging seemed to have a minimal impact on BF volume in males. Our study highlights the importance of considering sex as a research variable in brain science.

5.
Environ Res ; 248: 118095, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38272295

ABSTRACT

The key to controlling environmental pollution is to promote green innovation in relevant enterprises and achieve a healthy development of the environmental governance system. This paper constructs a tripartite evolutionary game model of environmental protection enterprises, polluting enterprises, and governments, and conducts in-depth research on the influencing factors that promote green innovation in two types of enterprises. MATLAB software is used to analyze the impact of different degrees of influencing variables on system evolution. It has found that (1) increasing the intensity of environmental governance and the level of innovation subsidies by the government can effectively promote green innovation in both types of enterprises. (2) The varying degrees of innovation compensation from polluting enterprises to environmental protection enterprises have a significant impact on system evolution. (3) The initial intention and population size of two types of enterprise entities will have a significant impact on system evolution. In the initial state, subjects with more green innovation are less willing to change their strategies during the evolution process, while the willingness of the other party to green innovation will be suppressed.


Subject(s)
Conservation of Natural Resources , Environmental Policy , Humans , Environmental Pollution , Government , Health Status , China
6.
EBioMedicine ; 99: 104904, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061241

ABSTRACT

BACKGROUND: The pathology of keloid and especially the roles of bacteria on it were not well understood. METHODS: In this study, multi-omics analyses including microbiome, metaproteomics, metabolomic, single-cell transcriptome and cell-derived xenograft (CDX) mice model were used to explore the roles of bacteria on keloid disease. FINDINGS: We found that the types of bacteria are significantly different between keloid and healthy skin. The 16S rRNA sequencing and metaproteomics showed that more catalase (CAT) negative bacteria, Clostridium and Roseburia existed in keloid compared with the adjacent healthy skin. In addition, protein mass spectrometry shows that CAT is one of the differentially expressed proteins (DEPs). Overexpression of CAT inhibited the proliferation, migration and invasion of keloid fibroblasts, and these characteristics were opposite when CAT was knocked down. Furthermore, the CDX model showed that Clostridium butyricum promote the growth of patient's keloid fibroblasts in BALB/c female nude mice, while CAT positive bacteria Bacillus subtilis inhibited it. Single-cell RNA sequencing verified that oxidative stress was up-regulated and CAT was down-regulated in mesenchymal-like fibroblasts of keloid. INTERPRETATION: In conclusion, our findings suggest that bacteria and CAT contribute to keloid disease. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Subject(s)
Keloid , Humans , Female , Animals , Mice , Keloid/genetics , Keloid/metabolism , Keloid/pathology , Catalase/genetics , Mice, Nude , Multiomics , RNA, Ribosomal, 16S/genetics , Cell Proliferation , Cells, Cultured
7.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38037843

ABSTRACT

Human brain structure shows heterogeneous patterns of change across adults aging and is associated with cognition. However, the relationship between cortical structural changes during aging and gene transcription signatures remains unclear. Here, using structural magnetic resonance imaging data of two separate cohorts of healthy participants from the Cambridge Centre for Aging and Neuroscience (n = 454, 18-87 years) and Dallas Lifespan Brain Study (n = 304, 20-89 years) and a transcriptome dataset, we investigated the link between cortical morphometric similarity network and brain-wide gene transcription. In two cohorts, we found reproducible morphometric similarity network change patterns of decreased morphological similarity with age in cognitive related areas (mainly located in superior frontal and temporal cortices), and increased morphological similarity in sensorimotor related areas (postcentral and lateral occipital cortices). Changes in morphometric similarity network showed significant spatial correlation with the expression of age-related genes that enriched to synaptic-related biological processes, synaptic abnormalities likely accounting for cognitive decline. Transcription changes in astrocytes, microglia, and neuronal cells interpreted most of the age-related morphometric similarity network changes, which suggest potential intervention and therapeutic targets for cognitive decline. Taken together, by linking gene transcription signatures to cortical morphometric similarity network, our findings might provide molecular and cellular substrates for cortical structural changes related to cognitive decline across adults aging.


Subject(s)
Aging , Brain , Adult , Humans , Brain/physiology , Aging/physiology , Cognition/physiology , Temporal Lobe , Magnetic Resonance Imaging/methods
8.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38031362

ABSTRACT

Fractal patterns have been shown to change in resting- and task-state blood oxygen level-dependent signals in bipolar disorder patients. However, fractal characteristics of brain blood oxygen level-dependent signals when responding to external emotional stimuli in pediatric bipolar disorder remain unclear. Blood oxygen level-dependent signals of 20 PBD-I patients and 17 age- and sex-matched healthy controls were extracted while performing an emotional Go-Nogo task. Neural responses relevant to the task and Hurst exponent of the blood oxygen level-dependent signals were assessed. Correlations between clinical indices and Hurst exponent were estimated. Significantly increased activations were found in regions covering the frontal lobe, parietal lobe, temporal lobe, insula, and subcortical nuclei in PBD-I patients compared to healthy controls in contrast of emotional versus neutral distractors. PBD-I patients exhibited higher Hurst exponent in regions that involved in action control, such as superior frontal gyrus, inferior frontal gyrus, inferior temporal gyrus, and insula, with Hurst exponent of frontal orbital gyrus correlated with onset age. The present study exhibited overactivation, increased self-similarity and decreased complexity in cortical regions during emotional Go-Nogo task in patients relative to healthy controls, which provides evidence of an altered emotional modulation of cognitive control in pediatric bipolar disorder patients. Hurst exponent may be a fractal biomarker of neural activity in pediatric bipolar disorder.


Subject(s)
Bipolar Disorder , Humans , Child , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/psychology , Brain/diagnostic imaging , Emotions/physiology , Frontal Lobe , Prefrontal Cortex , Brain Mapping , Magnetic Resonance Imaging
9.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38044469

ABSTRACT

Brain function changes affect cognitive functions in older adults, yet the relationship between cognition and the dynamic changes of brain networks during naturalistic stimulation is not clear. Here, we recruited the young, middle-aged and older groups from the Cambridge Center for Aging and Neuroscience to investigate the relationship between dynamic metrics of brain networks and cognition using functional magnetic resonance imaging data during movie-watching. We found six reliable co-activation pattern (CAP) states of brain networks grouped into three pairs with opposite activation patterns in three age groups. Compared with young and middle-aged adults, older adults dwelled shorter time in CAP state 4 with deactivated default mode network (DMN) and activated salience, frontoparietal and dorsal-attention networks (DAN), and longer time in state 6 with deactivated DMN and activated DAN and visual network, suggesting altered dynamic interaction between DMN and other brain networks might contribute to cognitive decline in older adults. Meanwhile, older adults showed easier transfer from state 6 to state 3 (activated DMN and deactivated sensorimotor network), suggesting that the fragile antagonism between DMN and other cognitive networks might contribute to cognitive decline in older adults. Our findings provided novel insights into aberrant brain network dynamics associated with cognitive decline.


Subject(s)
Brain , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Brain Mapping , Nerve Net/diagnostic imaging , Nerve Net/physiology
10.
Int Ophthalmol ; 43(11): 4111-4120, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37480477

ABSTRACT

BACKGROUND: Dysfunctional lens index (DLI) changing is rarely reported after implantable collamer lens (ICL) implantation. In the current research, we hope to investigate the changes of DLI by ray-tracing aberrometry before and after implantation of the posterior chamber phakic implantable collamer lens with a central artificial hole for patients with moderate-to-high myopia. METHODS: This retrospective, observational case series included 206 eyes of 104 patients with moderate-to-high myopia who underwent ICL V4c implantation. Data were collected on ocular indicators preoperatively and at 1 day, 1, 3, and 6 months postoperatively. The i-Trace Visual Functional Analyzer was used to assess the DLI measurement. RESULTS: The overall values of safety index and efficacy index were both more than 1. Preoperatively, the mean spherical equivalent (SE) of included 206 eyes was - 10.77 ± 3.46 diopter (D). Then at 1-day postoperation, the mean SE was - 0.22 ± 0.55 D, and barely changed from 1 day to 6 months postoperatively. Although the endothelial parameters had no significant differences between preoperation and postoperation, the mean loss of endothelial cells was 0.74 ± 0.98% at 6 months. Regarding the vault, there was a significant difference between each time of follow-up (P < 0.001). The mean of the vault decreased 109.6 ± 13.5 µm from 1-day post-op to 6 months post-op. The DLI values were 3.70, 9.26, 10.00, and 9.68 at baseline, 1, 3, and 6 months, respectively (P < 0.001), but no significant differences were found between 1, 3, and 6 months postoperatively (P > 0.05). The preoperative lnDLI showed a significant positive linear correlation (r = 0.621, P < 0.001) with the preoperative spherical equivalent (SE). The lnDLI was negatively correlated with the axial length (r = - 0.462, P < 0.001), corneal thickness (r = - 0.207, P = 0.003), preoperative LogMAR UDVA (r = - 0.189, P = 0.006), and preoperative LogMAR CDVA (r = - 0.306, P < 0.001). CONCLUSIONS: The postoperative refractive parameters were confirmed excellent in efficacy, predictability, and stability in half a year. The DLI was significantly improved after the ICL V4c implantation in patients with moderate-to-high myopia and showed good stability during the follow-up periods. The DLI deserves a more comprehensive understanding and application in clinical services.


Subject(s)
Lens, Crystalline , Lenses, Intraocular , Myopia , Humans , Endothelial Cells , Retrospective Studies , Myopia/surgery
11.
BMC Psychiatry ; 23(1): 515, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37464363

ABSTRACT

BACKGROUND: Brain entropy reveals complexity and irregularity of brain, and it has been proven to reflect brain complexity alteration in disease states. Previous studies found that bipolar disorder adolescents showed cognitive impairment. The relationship between complexity of brain neural activity and cognition of bipolar II disorder (BD-II) adolescents remains unclear. METHODS: Nineteen BD-II patients (14.63 ±1.57 years old) and seventeen age-gender matched healthy controls (HCs) (14.18 ± 1.51 years old) were enlisted. Entropy values of all voxels of the brain in resting-state functional MRI data were calculated and differences of them between BD-II and HC groups were evaluated. After that, correlation analyses were performed between entropy values of brain regions showing significant entropy differences and clinical indices in BD-II adolescents. RESULTS: Significant differences were found in scores of immediate visual reproduction subtest (VR-I, p = 0.003) and Stroop color-word test (SCWT-1, p = 0.015; SCWT-2, p = 0.004; SCWT-3, p = 0.003) between the two groups. Compared with HCs, BD-II adolescents showed significant increased brain entropy in right parahippocampal gyrus and right inferior occipital gyrus. Besides, significant negative correlations between brain entropy values of right parahippocampal gyrus, right inferior occipital gyrus and immediate visual reproduction subtest scores were observed in BD-II adolescents. CONCLUSIONS: The findings of the present study suggested that the disrupted function of corticolimbic system is related with cognitive abnormality of BD-II adolescents. And from the perspective temporal dynamics of brain system, the current study, brain entropy may provide available evidences for understanding the underlying neural mechanism in BD-II adolescents.


Subject(s)
Bipolar Disorder , Humans , Adolescent , Child , Bipolar Disorder/psychology , Entropy , Magnetic Resonance Imaging , Brain , Parahippocampal Gyrus/diagnostic imaging , Occipital Lobe/diagnostic imaging
12.
Cereb Cortex ; 33(13): 8645-8653, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37143182

ABSTRACT

Sex differences in episodic memory (EM), remembering past events based on when and where they occurred, have been reported, but the neural mechanisms are unclear. T1-weighted images of 111 females and 61 males were acquired from the Dallas Lifespan Brain Study. Using surface-based morphometry and structural covariance (SC) analysis, we constructed structural covariance networks (SCN) based on cortical volume, and the global efficiency (Eglob) was computed to characterize network integration. The relationship between SCN and EM was examined by SC analysis among the top-n brain regions that were most relevant to EM performance. The number of SC connections (females: 3306; males: 437, P = 0.0212) and Eglob (females: 0.1845; males: 0.0417, P = 0.0408) of SCN in females were higher than those in males. The top-n brain regions with the strongest SC in females were located in auditory network, cingulo-opercular network (CON), and default mode network (DMN), and in males, they were located in frontoparietal network, CON, and DMN. These results confirmed that the Eglob of SCN in females was higher than males, sex differences in EM performance might be related to the differences in network-level integration. Our study highlights the importance of sex as a research variable in brain science.


Subject(s)
Memory, Episodic , Humans , Male , Female , Sex Characteristics , Brain , Magnetic Resonance Imaging , Brain Mapping
13.
Cereb Cortex ; 33(12): 7540-7552, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36928535

ABSTRACT

Bipolar disorder (BD) is a heritable psychiatric disorder with a complex etiology that is often associated with cortical alterations. Morphometric studies in adults with BD are well established; however, few have examined cortical changes in pediatric BD (PBD). Additionally, the correlation between cortical thickness (CT) changes in PBD and gene expression remains elusive. Here, we performed an integrative analysis using neuroimaging data from 58 PBD individuals and the Allen human brain transcriptomic dataset. We applied partial least squares (PLS) regression analysis on structural MRI data and cortical gene expression, enrichment and specific cell type analysis to investigate the genetic correlates of CT alterations in PBD. We found the expression levels of PBD-related genes showed significant spatial correlations with CT differences. Further enrichment and specific cell type analysis revealed that transcriptome signatures associated with cortical thinning were enriched in synaptic signaling, ion channels, astrocytes, and excitatory neurons. Neurodevelopmental patterns of these genes showed significantly increased expression in the cerebellum, cortex, and subcortical regions during the adolescence period. These results highlight neurodevelopmental transcriptional changes could account for most of the observed correlations with CT differences in PBD, which offers a novel perspective to understand biological conceptualization mechanisms for the genetic correlates of CT alterations.


Subject(s)
Bipolar Disorder , Adult , Adolescent , Humans , Child , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Bipolar Disorder/psychology , Transcriptome , Astrocytes , Brain , Magnetic Resonance Imaging , Neurons
14.
Quant Imaging Med Surg ; 13(2): 1083-1099, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36819243

ABSTRACT

Background: The impacts of age and sex on brain structures related to cognitive function may be important for understanding the role of aging in Alzheimer disease for both sexes. We intended to investigate the age and sex differences of cortical morphology in middle-aged and older adults and their relationships with the decline of cognitive function. Methods: In this cross-sectional study, we examined the cortical morphology in 204 healthy middle-aged and older adult participants aged 45 to 89 years using structural magnetic resonance imaging (sMRI) data from the Dallas Lifespan Brain Study data set. Brain cortical thickness, surface complexity, and gyrification index were analyzed through a completely automated surface-based morphometric analysis using the CAT12 toolbox. Furthermore, we explored the correlation between cortical morphology differences and test scores for processing speed and working memory. Results: There were no significant interactions of age and sex with cortical thickness, fractal dimension, or gyrification index. Rather, we found that both males and females showed age-related decreases in cortical thickness, fractal dimension, and gyrification index. There were significant sex differences in the fractal dimension in middle-aged participants and the gyrification index in older adult participants. In addition, there were significant positive correlations between the cortical thickness of the right superior frontal gyrus and Wechsler Adult Intelligence Scale (WAIS)-III Letter-Number Sequencing test scores in males (r=0.394; P<0.001; 95% CI for r values 0.216-0.577) and females (r=0.344; P<0.001; 95% CI for r values 0.197-0.491), respectively. Furthermore, a significant relationship between the gyrification index of the right supramarginal gyrus (SupraMG) and WAIS-III Digit Symbol test scores was observed in older adult participants (r=0.375; P<0.001; 95% CI for r values 0.203-0.522). Conclusions: The results suggest that, compared with males, females have more extensive differences in cortical morphology. The gyrification index of the right SupraMG can be used as an imaging marker of sexual cognitive differences between males and females in older adults. This study helps to further understand sex differences in the aging of the brain and cognition.

15.
J Magn Reson Imaging ; 58(3): 720-731, 2023 09.
Article in English | MEDLINE | ID: mdl-36637029

ABSTRACT

BACKGROUND: How the functional interactions of the basal ganglia/thalamus with the cerebral cortex and the cerebellum change over the adult lifespan in movie-watching and resting-state is less clear. PURPOSE: To investigate the functional changes in the organization of the human cortical-subcortical functional networks over the adult lifespan using movie-watching and resting-state fMRI data. STUDY TYPE: Cohort. SUBJECTS: Healthy 467 adults (cross-sectional individuals aged 18-88 years) from the Cambridge Centre for Ageing and Neuroscience (www.cam-can.com). FIELD STRENGTH/SEQUENCE: fMRI using a gradient-echo echo-planar imaging (EPI) sequence at 3 T. ASSESSMENT: Functional connectivities (FCs) of the subcortical subregions (i.e. the basal ganglia and thalamus) with both the cerebral cortex and cerebellum were examined in fMRI data acquired during resting state and movie-watching. And, fluid intelligence scores were also assessed. STATISTICAL TESTS: Student's t-tests, false discovery rate (FDR) corrected. RESULTS: As age increased, FCs that mainly within the basal ganglia and thalamus, and between the basal ganglia/thalamus and cortical networks (including the dorsal attention, ventral attention, and limbic networks) were both increased/decreased during movie-watching and resting states. However, FCs showed a state-dependent component with advancing age. During the movie-watching state, the FCs between the basal ganglia/thalamus and cerebellum/frontoparietal control networks were mainly increased with age, and the FCs in the somatomotor network were decreased with age. During the resting state, the FCs between the basal ganglia/thalamus and default mode/visual networks were mainly increased with age, and the FCs in the cerebellum were mainly decreased with age. Moreover, inverse relationships between FCs and fluid intelligence were mainly found in these network regions. DATA CONCLUSION: Our study may suggest that changes in cortical-subcortical functional networks across the adult lifespan were both state-dependent and stable traits, and that aging fMRI studies should consider the effects of both physiological characteristics and individual situations. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 3.


Subject(s)
Basal Ganglia , Longevity , Adult , Humans , Cross-Sectional Studies , Basal Ganglia/diagnostic imaging , Aging/physiology , Magnetic Resonance Imaging/methods , Cerebral Cortex , Thalamus , Neural Pathways , Brain Mapping/methods
16.
Front Neurosci ; 16: 984571, 2022.
Article in English | MEDLINE | ID: mdl-36213738

ABSTRACT

An increasing number of studies have shown that the functional interactions between the thalamus and cerebral cortices play an important role in cognitive function and are influenced by age. Previous studies have revealed age-related changes in the thalamo-cortical system within individuals, while neglecting differences between individuals. Here, we characterized inter-subject functional correlation (ISFC) between the thalamus and several cortical brain networks in 500 healthy participants aged 18-87 years old from the Cambridge Centre for Aging and Neuroscience (Cam-CAN) cohort using movie-watching state fMRI data. General linear models (GLM) were performed to assess age-related changes in ISFC of thalamo-cortical networks and the relationship between ISFC and fluid intelligence. We found significant age-related decreases in ISFC between the posterior thalamus (e.g., ventral posterior nucleus and pulvinar) and the attentional network, sensorimotor network, and visual network (FDR correction with p < 0.05). Meanwhile, the ISFC between the thalamus (mainly the mediodorsal nucleus and ventral thalamic nuclei) and higher-order cortical networks, including the default mode network, salience network and control network, showed complex changes with age. Furthermore, the altered ISFC of thalamo-cortical networks was positively correlated with decreased fluid intelligence (FDR correction with p < 0.05). Overall, our results provide further evidence that alterations in the functional integrity of the thalamo-cortical system might play an important role in cognitive decline during aging.

17.
Front Comput Neurosci ; 16: 915477, 2022.
Article in English | MEDLINE | ID: mdl-36082304

ABSTRACT

The diagnosis based on clinical assessment of pediatric bipolar disorder (PBD) may sometimes lead to misdiagnosis in clinical practice. For the past several years, machine learning (ML) methods were introduced for the classification of bipolar disorder (BD), which were helpful in the diagnosis of BD. In this study, brain cortical thickness and subcortical volume of 33 PBD-I patients and 19 age-sex matched healthy controls (HCs) were extracted from the magnetic resonance imaging (MRI) data and set as features for classification. The dimensionality reduced feature subset, which was filtered by Lasso or f_classif, was sent to the six classifiers (logistic regression (LR), support vector machine (SVM), random forest classifier, naïve Bayes, k-nearest neighbor, and AdaBoost algorithm), and the classifiers were trained and tested. Among all the classifiers, the top two classifiers with the highest accuracy were LR (84.19%) and SVM (82.80%). Feature selection was performed in the six algorithms to obtain the most important variables including the right middle temporal gyrus and bilateral pallidum, which is consistent with structural and functional anomalous changes in these brain regions in PBD patients. These findings take the computer-aided diagnosis of BD a step forward.

18.
Front Aging Neurosci ; 14: 845912, 2022.
Article in English | MEDLINE | ID: mdl-35601617

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (DLPFC) is a non-invasive effective treatment for cognitive disorder, but its underlying mechanism of action remains unknown. The aim of this study was to explore the effect of a 2-week high-frequency (HF) active or sham 10 Hz rTMS on verbal memory in 40 healthy older adults. Resting-state functional magnetic resonance imaging (rs-fMRI) was used to measure functional connectivity (FC) within the default mode network (DMN). Verbal memory performance was evaluated using an auditory verbal learning test (AVLT). Additionally, we evaluated the relationship between memory improvement and FC changes within the DMN. The results revealed that HF-rTMS can enhance immediate recall and delayed recall of verbal memory and increased the FC of the bilateral precuneus (PCUN) within the DMN. The positive correlations between the immediate recall memory and the FC of the left PCUN after a 2-week intervention of HF-rTMS were detected. In conclusion, HF-rTMS may have the potential to improve verbal memory performance in older adults, which relation to FC changes in the DMN. The current findings are useful for increasing the understanding of the mechanisms of HF-rTMS, as well as guiding HF-rTMS treatment of cognitive disorders.

19.
J Affect Disord ; 301: 281-288, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35031334

ABSTRACT

BACKGROUND: As a crucial node of the corticolimbic model, the striatum has been demonstrated in modulating emotional cues in pediatric bipolar disorders (PBD), the striatal distinction in structure and function between PBD-I and PBD-II remains unclear. METHODS: MRI data of 36 patients in PBD-I, 22 patients in PBD-II and 19 age-gender matched healthy controls (HCs) were processed. Here, we investigated structural and functional alterations of 8 subregions of striatum (bilateral nucleus accumbens, caudate, putamen and globus pallidus) by analyzing MRI data. RESULTS: We found volume reduction of the right pallidum, the significant positive correlation between the number of episodes and the functional connectivity between left pallidum and right caudate in PBD-I patients, abrupted prefrontal-striatal-thalamic functional connectivity in PBD-I group and decreased functional connectivity in PBD-II relative to HCs and PBD-I. LIMITATIONS: Future studies should enroll more subjects and adopt a longitudinal perspective, which could help to discover striatum structural or functional alterations during subject-specific clinical progress in different states. CONCLUSIONS: Results of the present study confirmed that structural and functional abnormality of striatum may be helpful in identifying PBD clinical types as distinctive biomarkers. The interruptions of the prefrontal-striatal-thalamic circuits may provide advantageous evidence for expounding the role of striatum in bipolar disorders etiology. Thus, potential mechanisms of dysfunction striatum need to be formulated and reconceptualized with multimodal neuroimaging studies in future.


Subject(s)
Bipolar Disorder , Globus Pallidus , Bipolar Disorder/psychology , Child , Corpus Striatum/diagnostic imaging , Globus Pallidus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Putamen/diagnostic imaging , Thalamus/diagnostic imaging
20.
J Psychiatr Res ; 143: 106-112, 2021 11.
Article in English | MEDLINE | ID: mdl-34479001

ABSTRACT

BACKGROUND: Alterations of brain signal complexity may reflect brain functional abnormalities. In adolescent bipolar disorder (ABD) distribution of brain regions showing abnormal complexity in different mood states remains unclear. We aimed to analyze brain entropy (BEN) alteration of functional magnetic resonance imaging (fMRI) signal to observe spatial distribution of complexity in ABD patients, as well as the relationship between this variation and clinical variables. METHODS: Resting-state fMRI data were acquired from adolescents with bipolar disorder (BD) who were in manic (n = 19) and euthymic (n = 20) states, and from healthy controls (HCs, n = 17). The differences in BEN among the three groups, and their associations with clinical variables, were examined. RESULTS: Compared to HCs, manic and euthymic ABD patients showed increased BEN in right parahippocampal gyrus (PHG) and left dorsolateral prefrontal cortex (DLPFC). There was no significant difference of BEN between the manic and the euthymic ABD groups. In manic ABD patients, right PHG BEN exhibited significantly positive relationship with episode times. CONCLUSIONS: Increased BEN in right PHG and left DLPFC in ABD patients may cause dysfunction of corticolimbic circuitry which is important to emotional processing and cognitive control. The positive correlation between PHG BEN and episode times of manic ABD patients further expressed a close association between brain complexity and clinical symptoms. From the perspective of brain temporal dynamics, the present study complements previous findings that have reported corticolimbic dysfunction as an important contributor to the pathophysiology of BD. BEN may provide valuable evidences for understanding the underlying mechanism of ABD.


Subject(s)
Bipolar Disorder , Adolescent , Bipolar Disorder/diagnostic imaging , Brain , Entropy , Humans , Parahippocampal Gyrus/diagnostic imaging , Prefrontal Cortex/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...