Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Protein Pept Lett ; 28(9): 1033-1042, 2021.
Article in English | MEDLINE | ID: mdl-33645472

ABSTRACT

BACKGROUND: Pulmonary surfactant dysfunction is an important pathological factor in acute respiratory distress syndrome (ARDS) and pulmonary fibrosis (PF). OBJECTIVE: In this study, the characteristics of recombinant mature surfactant protein B (SP-B) and reteplase (rPA) fusion protein maintaining good pulmonary surface activity and rPA fibrinolytic activity in acute lung injury cell model were studied. METHODS: We studied the characteristics of SP-B fusion expression, cloned rPA gene and N-terminal rPA/C-terminal SP-B co-expression gene, and constructed them into eukaryotic expression vector pEZ-M03 to obtain recombinant plasmids pEZ-rPA and pEZ-rPA/SP-B. The recombinant plasmids was transfected into Chinese hamster ovary (CHO) K1 cells and the expression products were analyzed by Western Blot. Lipopolysaccharide (LPS) was used to induce CCL149 (an alveolar epithelial cell line) cell injury model. Fluorescence staining of rPA and rPA/SP-B was carried out with the enhanced green fluorescent protein (eGFP) that comes with pEZ-M03; the cell Raman spectroscopy technique was used to analyze the interaction between rPA/SP-B fusion protein and the phospholipid structure of cell membrane in CCL149 cells. The enzyme activity of rPA in the fusion protein was determined by fibrin-agarose plate method. RESULTS: The rPA/SP-B fusion protein was successfully expressed. In the CCL149 cell model of acute lung injury (ALI), the green fluorescence of rPA/SP-B is mainly distributed on the CCL149 cell membrane. The rPA/SP-B fusion protein can reduce the disorder of phospholipid molecules and reduce cell membrane damage. The enzyme activity of rPA/SP-B fusion protein was 3.42, and the fusion protein still had good enzyme activity. CONCLUSION: The recombinant eukaryotic plasmid pEZ-rPA/SP-B is constructed and can be expressed in the eukaryotic system. Studies have shown that rPA/SP-B fusion protein maintains good SP-B lung surface activity and rPA enzyme activity in acute lung injury cell model.


Subject(s)
Epithelial Cells/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Surfactant-Associated Protein B , Recombinant Fusion Proteins , Respiratory Distress Syndrome/drug therapy , Tissue Plasminogen Activator , Animals , CHO Cells , Cricetulus , Humans , Lipopolysaccharides/toxicity , Pulmonary Surfactant-Associated Protein B/biosynthesis , Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactant-Associated Protein B/genetics , Pulmonary Surfactant-Associated Protein B/pharmacology , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/metabolism , Tissue Plasminogen Activator/biosynthesis , Tissue Plasminogen Activator/chemistry , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/pharmacology
2.
Protein Expr Purif ; 179: 105801, 2021 03.
Article in English | MEDLINE | ID: mdl-33248225

ABSTRACT

While the discovery of antibiotics has made a huge contribution to medicine, bacteria that are resistant to many antibiotics pose new challenges to medicine. Antimicrobial peptides (AMPs), a new kind of antibiotics, have attracted people's attention because they are not prone to drug resistance. In this study, glutathione transferase (GST) was used as a fusion partner to recombinantly expressed rat lung surfactant protein B precursor (proSP-B) in E. coli pLySs. Cck-8 evaluated the cytotoxicity of the fusion protein and calculated its 50% inhibitory concentration (IC50). The purified peptides showed broad-spectrum antibacterial activity using filter paper method and MIC, and propidium iodide (PI) was used to explore the antibacterial mechanism against Staphylococcus aureus. In addition, the pEGFP-N2-proSP-B vector was constructed to explore the localization of proSP-B in CCL-149 cells. We found that proSP-B has obvious antibacterial activity against Gram-positive bacteria, Gram-negative bacteria and fungi, and has broad-spectrum antibacterial activity. Besides, proSP-B fusion protein has low toxicity and can change the permeability of Staphylococcus aureus cell membrane to realize its antibacterial. For these reasons, proSP-B can be used as a potential natural antibacterial drug.


Subject(s)
Anti-Bacterial Agents , Pulmonary Surfactant-Associated Proteins , Recombinant Proteins , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Escherichia coli/genetics , Fungi/drug effects , Lung/chemistry , Microbial Sensitivity Tests , Pulmonary Surfactant-Associated Proteins/genetics , Pulmonary Surfactant-Associated Proteins/metabolism , Pulmonary Surfactant-Associated Proteins/pharmacology , RNA/isolation & purification , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL