Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Natl Sci Rev ; 11(6): nwae115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707202

ABSTRACT

Multi-boron-embedded multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show promise for achieving both high color-purity emission and high exciton utilization efficiency. However, their development is often impeded by a limited synthetic scope and excessive molecular weights, which challenge material acquisition and organic light-emitting diode (OLED) fabrication by vacuum deposition. Herein, we put forward a B‒N covalent bond-involved π-extension strategy via post-functionalization of MR frameworks, leading to the generation of high-order B/N-based motifs. The structurally and electronically extended π-system not only enhances molecular rigidity to narrow emission linewidth but also promotes reverse intersystem crossing to mitigate efficiency roll-off. As illustrated examples, ultra-narrowband sky-blue emitters (full-width at half-maximum as small as 8 nm in n-hexane) have been developed with multi-dimensional improvement in photophysical properties compared to their precursor emitters, which enables narrowband OLEDs with external quantum efficiencies (EQEmax) of up to 42.6%, in company with alleviated efficiency decline at high brightness, representing the best efficiency reported for single-host OLEDs. The success of these emitters highlights the effectiveness of our molecular design strategy for advanced MR-TADF emitters and confirms their extensive potential in high-performance optoelectronic devices.

2.
Angew Chem Int Ed Engl ; 63(18): e202402020, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38385590

ABSTRACT

1,4-BN-doped polycyclic aromatic hydrocarbons (PAHs) have emerged as very promising emitters in organic light-emitting diodes (OLEDs) due to their narrowband emission spectra that may find application in high-definition displays. While considerable research has focused on investigating the properties of these materials, less attention has been placed on their synthetic methodology. Here we developed an efficient synthetic method for 1,4-BN-doped PAHs, which enables sustainable production of narrowband organic emitting materials. By strategically introducing substituents, such as methyl, tert-butyl, phenyl, and chloride, at the C5 position of the 1,3-benzenediamine substrates, we achieved remarkable regioselective borylation in the para-position of the substituted moiety. This approach facilitated the synthesis of a diverse range of 1,4-BN-doped PAHs emitters with good yields and exceptional regioselectivity. The synthetic method demonstrated excellent scalability for large-scale production and enabled late-stage transformation of the borylated products. Mechanistic investigations provided valuable insights into the pivotal roles of electron effect and steric hindrance effect in achieving highly efficient regioselective borylation. Moreover, the outstanding device performance of the synthesized compounds 10 b and 6 z, underscores the practicality and significance of the developed method.

3.
Luminescence ; 39(1): e4624, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37950413

ABSTRACT

Organic light-emitting diodes (OLEDs) utilizing multi-resonance (MR) emitters show great potential in ultrahigh-definition display benefitting from superior merits of MR emitters such as high color purity and photoluminescence quantum yields. However, the scarcity of narrowband pure-green MR emitters with novel backbones and facile synthesis has limited their further development. Herein, two novel pure-green MR emitters (IDIDBN and tBuIDIDBN) are demonstrated via replacing the carbazole subunits in the bluish-green BCzBN skeleton with new polycyclic aromatic hydrocarbon (PAH) units, 5-phenyl-5,10-dihydroindolo[3,2-b]indole (IDID) and 5-(4-(tert-butyl)phenyl)-5,10-dihydroindolo[3,2-b]indole (tBuIDID), to simultaneously enlarge the π-conjugation and enhance the electron-donating strength. Consequently, a successful red shift from aquamarine to pure-green is realized for IDIDBN and tBuIDIDBN with photoluminescence maxima peaking at 529 and 532 nm, along with Commission Internationale de l'Eclairage (CIE) coordinates of (0.25, 0.71) and (0.28, 0.70). Furthermore, both emitters revealed narrowband emission with small full width at half-maximum (FWHM) below 28 nm. Notably, the narrowband pure-green emission was effectively preserved in corresponding devices, which afford elevated maximum external quantum efficiencies of 16.3% and 18.3% for IDIDBN and tBuIDIDBN.


Subject(s)
Indoles , Polycyclic Aromatic Hydrocarbons , Electrons
4.
Adv Mater ; 36(1): e2308314, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37963185

ABSTRACT

Helicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light-emitting diodes (CP-OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet-harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene-based emitters that is strategically engineered through the helical extension of a deep-blue double-boron-based multiple resonance thermally activated delayed fluorescence (MR-TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep-blue emission and MR-TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 × 10-3 . Exploiting these merits, devices incorporating the chiral dopants demonstrate deep-blue emission within the Broadcast Service Television 2020 color-gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors' findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high-definition displays.

5.
Angew Chem Int Ed Engl ; 63(7): e202318433, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38148704

ABSTRACT

Multiple-resonance thermally activated delayed fluorescence (MR-TADF) materials are highly coveted for their high efficiency and narrowband emission in organic light-emitting diodes (OLEDs). Nevertheless, the development of near-infrared (NIR) MR-TADF emitters remains a formidable challenge. In this study, we design two new NIR MR-TADF emitters, PXZ-R-BN and BCz-R-BN, by embedding 10H-phenoxazine (PXZ) and 7H-dibenzo[c,g]carbazole (BCz) fragments to increase the electron-donating ability or extending π-conjugation on the framework of para-boron fusing polycyclic aromatic hydrocarbons (PAHs). Both compounds emit in the NIR region, with a full-width at half-maximum (FWHM) of 49 nm (0.13 eV) for PXZ-R-BN and 43 nm (0.11 eV) for BCz-R-BN in toluene. To sensitize the two NIR MR-TADF emitters in OLEDs, a new platinum complex, Pt-1, is designed as a sensitizer. The PXZ-R-BN-based sensitized OLEDs achieve a maximum external quantum efficiency (EQEmax ) of nearly 30 % with an emission band at 693 nm, and exceptional long operational stability with an LT97 (time to 97 % of the initial luminance) value of 39084 h at an initial radiance of 1000 mW sr-1 m-2 . The BCz-R-BN-based OLEDs reach EQEmax values of 24.2 % with an emission band at 713 nm, which sets a record value for NIR OLEDs with emission bands beyond 700 nm.

6.
Adv Sci (Weinh) ; 10(31): e2304204, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37718390

ABSTRACT

Pure polycyclic aromatic hydrocarbons (PAHs) consisting solely of carbon-hydrogen or carbon-carbon bonds offer great potential for constructing durable and cost-effective emitters in organic electroluminescence devices. However, achieving versatile fluorescence characteristics in pure PAHs remains a considerable challenge, particularly without the inclusion of heteroatoms. Herein, an efficient approach is presented that involves incorporating non-six-membered rings into classical pyrene isomerides, enabling simultaneous achievement of full-color emission, delayed fluorescence, and anti-Kasha emission. Theoretical calculations reveal that the intensity and distribution of aromaticity/anti-aromaticity in both ground and excited states play a crucial role in determining the excited levels and fluorescence yields. Transient fluorescence measurements confirm the existence of thermally activated delayed fluorescence in pure PAHs. By utilizing these PAHs as emitting layers, electroluminescent spectra covering the entire visible region along with a maximum external quantum efficiency of 9.1% can be achieved, leading to the most exceptional results among non-doped pure hydrocarbon-based devices.

7.
Mater Horiz ; 10(9): 3712-3718, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37403802

ABSTRACT

Here, we propose a new simple and effective strategy for designing pure-red multi-resonance (MR) emitters through precisely regulating the double-boron-based MR framework. The two designed emitters exhibit ultrapure red emission together with superb photophysical properties, and further enable high-performance, high color-purity red OLEDs.

8.
Mater Horiz ; 10(9): 3785-3790, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37409621

ABSTRACT

The geometry of the molecular skeleton is of importance for the property regulation of organic electronic materials. Herein, we present a phenyl-embedded molecular design strategy to adjust the molecular curvature and achieve the improvement of blue multiple resonance (MR)-emitters. The introduction of a bridged phenyl contributes to a highly twisted saddle skeleton and the separation of frontier molecular orbitals, which are beneficial for the increase of photoluminescence quantum yield (PLQY) as well as the decrease of singlet-triplet energy gap (ΔEST). Consequently, hp-BQAO features an accelerated reverse intersystem crossing rate and suppressed non-radiative decay rate simultaneously, which enables the assembly of high-performance narrowband blue OLEDs with a record-high external quantum efficiency (EQE) of 24.1% for the blue OLED devices exploiting nitrogen-carbonyl-containing MR-emitters without sensitizers.

9.
Sci Adv ; 9(30): eadh8296, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37506207

ABSTRACT

Multiple resonance (MR) compounds have garnered substantial attention for their prospective utility in wide color gamut displays. Nevertheless, developing red MR emitters with both high efficiency and saturated emission color remains demanding. We herein introduce a comprehensive strategy for spectral tuning in the red region by simultaneously regulating the π-conjugation and electron-donating strengths of a double boron-embedded MR skeleton while preserving narrowband characteristics. The proof-of-concept materials manifested emissions from orange-red to deep red, with bandwidths below 0.12 eV. The pure-red device based on CzIDBNO displayed superior color purity with CIE coordinates of (0.701, 0.298), approaching the Broadcast Television 2020 standard. In concert with high photoluminescence quantum yield and strong horizontal dipole orientation, CzIDBNO also achieved a maximum external quantum efficiency of 32.5% and a current efficiency of 20.2 cd A-1, outstripping prior reported organic light-emitting diodes (OLEDs) with CIEx exceeding 0.68. These findings offer a roadmap for designing high-performance emitters with exceptional color purity for future OLED material research advancements.

10.
J Am Chem Soc ; 145(23): 12550-12560, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37276361

ABSTRACT

Multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters are promising candidates for narrowband organic light-emitting diodes, but their electroluminescent performance is typically hindered by the slow reverse intersystem crossing rate (kRISC). Herein, we present an effective strategy to introduce a multichannel reverse intersystem crossing (RISC) pathway with large spin-orbit coupling by orthogonally linking an electron-donating unit to the MR framework. Through delicate manipulation of the excited-state energy levels, an additional intersegmental charge transfer triplet state could be "silently" induced without perturbing the MR character of the lowest excited singlet state. The proof-of-concept emitter CzBN3 not only affords 23-fold increase of kRISC compared with its prototypical MR skeleton but also realizes close-to-unity photoluminescence quantum yield, large radiative rate constant, and very narrow emission spectrum. These merits enable high maximum external quantum efficiency (EQEmax) of up to 37.1% and alleviated efficiency roll-off in the sensitizer-free device (EQE1000 = 30.4%), and a further boost of efficiency (EQEmax/1000 = 42.3/34.1%) is realized in the hyperfluorescent device. The state-of-the-art electroluminescent performance validates the superiority of our molecular design strategy.

11.
Angew Chem Int Ed Engl ; 62(24): e202301988, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37069125

ABSTRACT

Most multi-resonance (MR) induced thermally activated delayed fluorescence (TADF) emitters generally exhibit strong aggregation and relatively worse solubility due to their rigid and planar molecule structures, which is highly undesirable for solution-processible devices. Herein, a simple but feasible approach for solution-processible small-molecule MR-TADF emitters is developed by incorporating two MR-TADF units onto carbazole bridge bearing long alkyl chains. The obtained emitters demonstrate supreme film-forming capability and narrowband emissions with full-width at half-maximums (FWHMs) of 22 nm. The resulting solution-processed narrowband electroluminescent devices achieve maximum external quantum efficiency of 27.1 %, which represents the highest efficiency among the solution-processed OLEDs based on MR-TADF emitters. This simple approach reveals great potential of developing solution-processible emitters for rigid and planar molecular structures.

12.
Adv Mater ; 35(28): e2300510, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37029773

ABSTRACT

Fabricating solution-processible host material for thermally activated delayed fluorescence (TADF) emitter remains a formidable challenge for organic light-emitting diodes (OLEDs). In this work, two new host materials, namely 3CzAcPy and 9CzAcPy, are found to exhibit high triplet energy levels, high thermal stability, and excellent film morphology from a solution process. An in-depth analysis on the photophysical data and device performance reveals the isomeric effect of the host materials has a significant impact not only on the host properties, but also on the host-dopant interactions and thus the performance of the resulting solution-processed TADF OLEDs. Impressively, the new hosts are proven to be suitable for both donor-acceptor type and multi-resonance TADF emitters, achieving state-of-the-art device performance. By using the new host 9CzAcPy, solution-processed OLED based on a donor-acceptor TADF emitter of DPAC-PCN, a maximum external quantum efficiency (EQE) of 29.5% is achieved, and solution-processed narrowband OLED based on a multiple-resonance TADF emitter of BN-CP1 acquires a maximum EQE of 26.6%. These efficiencies represent the highest values among the solution-processed TADF OLEDs. This study highlights the significance of host-dopant interactions in modulating the electroluminescence performance of TADF emitters, and provides an effective design principle for solution-processible host materials.


Subject(s)
Vibration , Fluorescence , Isomerism
13.
Angew Chem Int Ed Engl ; 62(19): e202302478, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36897063

ABSTRACT

Heavy-atom integration into thermally activated delayed fluorescence (TADF) molecule could significantly promote the reverse intersystem crossing (RISC) process. However, simultaneously achieving high efficiency, small roll-off, narrowband emission and good operational lifetime remains a big challenge for the corresponding organic light-emitting diodes (OLEDs). Herein, we report a pure green multi-resonance TADF molecule BN-STO by introducing a peripheral heavy atom selenium onto the parent BN-Cz molecule. The organic light-emitting diode device based on BN-STO exhibited state-of-the-art performance with a maximum external quantum efficiency (EQE) of 40.1 %, power efficiency (PE) of 176.9 lm W-1 , well-suppressed efficiency roll-off and pure green gamut. This work reveals a feasible strategy to reach a balance between fast RISC process and narrow full width at half maximum (FWHM) of MR-TADF by heavy atom effect.

14.
Chem Sci ; 14(12): 3326-3331, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36970083

ABSTRACT

Multiple resonance (MR) molecules based on a B/N polycyclic aromatic framework are the cutting-edge materials in the field of organic light-emitting diodes (OLEDs) owing to their superb photophysical properties. Tailoring the MR molecular framework with various functional groups toward ideal properties has become an emerging topic in the field of materials chemistry. Dynamic bond interactions are versatile and powerful tools in regulating the properties of materials. Herein, the pyridine moiety, which presents high affinity to form dynamic bond interactions such as hydrogen bonds and N→B dative bonds, was introduced into the MR framework for the first time, and the designed emitters are synthesized in a feasible way. The introduction of the pyridine moiety not only maintained the conventional MR properties of the emitters, but also endowed the emitters with tunable emission spectra, narrowed emission, enhanced photoluminescence quantum yield (PLQY), and intriguing supramolecular assembly in the solid state. Thanks to the overall superior properties brought by the hydrogen-bond promoted molecular rigidity, green OLEDs based on the emitter exhibit excellent device performance with external quantum efficiency (EQE) up to 38% and a small FWHM of 26 nm, together with good roll-off performance.

15.
J Am Chem Soc ; 144(50): 22976-22984, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36475679

ABSTRACT

Multiresonance thermal activated delayed fluorescence (MR-TADF) materials with an efficient spin-flip transition between singlet and triplet excited states remain demanding. Herein, we report an MR-TADF compound (BN-Se) simultaneously possessing efficient (reverse) intersystem crossing (ISC/RISC), fast radiative decay, close-to-unity quantum yield, and narrowband emission by embedding a single selenium atom into a common 4,4'-diazaborin framework. Benefitting from the high RISC efficiency accelerated by the heavy-atom effect, organic light-emitting diodes (OLEDs) based on BN-Se manifest excellent performance with an external quantum efficiency of up to 32.6% and an ultralow efficiency roll-off of 1.3% at 1000 cd m-2. Furthermore, the high ISC efficiency and small inherent energy loss also render BN-Se a superior photosensitizer to realize the first example of visible (λex > 450 nm)-to-UV (λem < 350 nm) triplet-triplet annihilation upconversion, with a high efficiency (21.4%) and an extremely low threshold intensity (1.3 mW cm-2). This work not only aids in designing advanced pure organic molecules with fast exciton dynamics but also highlights the value of MR-TADF compounds beyond OLED applications.

16.
Angew Chem Int Ed Engl ; 61(30): e202202227, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35536020

ABSTRACT

Highly efficient circularly polarized luminescence (CPL) emitters with narrowband emission remain a formidable challenge for circularly polarized OLEDs (CP-OLEDs). Here, a promising strategy for developing chiral emitters concurrently featuring multi-resonance thermally activated delayed fluorescence (MR-TADF) and circularly polarized electroluminescence (CPEL) is demonstrated by the integration of molecular rigidity, central chirality and MR effect. A pair of chiral green emitters denoted as (R)-BN-MeIAc and (S)-BN-MeIAc is designed. Benefited by the rigid and quasi-planar MR-framework, the enantiomers not only display mirror-image CPL spectra, but also exhibit TADF properties with a high photoluminescence quantum yield of 96 %, a narrow FWHM of 30 nm, and a high horizontal dipole orientation of 90 % in the doped film. Consequently, the enantiomer-based CP-OLEDs achieved excellent external quantum efficiencies of 37.2 % with very low efficiency roll-off, representing the highest device efficiency of all the reported CP-OLEDs.

17.
Angew Chem Int Ed Engl ; 61(29): e202201588, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35536106

ABSTRACT

Multi-resonance TADF (MR-TADF) emitters are promising for high-resolution OLEDs, but the concurrent optimization of excited-state dynamics and color purity remains a tough challenge. Herein, three deep-blue MR-TADF compounds (BN1-BN3) featuring gradually enlarged ring-fused structures and increased rigidity are accessed by lithium-free borylation in high yields from the same precursor, with all the emitters possessing CIEy coordinates below 0.08. Structure-property investigations demonstrate a strategic improvement of the oscillator strength (fosc ) and acceleration of the reverse intersystem crossing (RISC) process by extending the π-skeleton, where BN3 realizes a maximum external quantum efficiency (EQE) of 37.6 % and reduced roll-off, thus showing the best efficiency reported for deep-blue TADF OLEDs. The internal regulation of the efficiency and color purity of these compounds validate the general effectiveness to achieve advanced deep-blue narrowband emitters with higher-order boron/nitrogen-based MR motifs.

18.
Adv Mater ; 34(29): e2201442, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35588162

ABSTRACT

High-color-purity blue and green organic light-emitting diodes (OLEDs) have been resolved thanks to the development of B/N-based polycyclic multiple resonance (MR) emitters. However, due to the derivatization limit of B/N polycyclic structures, the design of red MR emitters remains challenging. Herein, a series of novel red MR emitters is reported by para-positioning N-π-N, O-π-O, B-π-B pairs onto a benzene ring to construct an MR central core. These emitters can be facilely and modularly synthesized, allowing for easy fine-tuning of emission spectra by peripheral groups. Moreover, these red MR emitters display excellent photophysical properties such as near-unity photoluminescence quantum yield (PLQY), fast radiative decay rate (kr ) up to 7.4 × 107 s-1 , and most importantly, narrowband emission with full-width at half-maximum (FWHM) of 32 nm. Incorporating these MR emitters, pure red OLEDs sensitized by phosphor realize state-of-the-art device performances with external quantum efficiency (EQE) exceeding 36%, ultralow efficiency roll-off (EQE remains as high as 25.1% at the brightness of 50 000 cd m-2 ), ultrahigh brightness over 130 000 cd m-2 , together with good device lifetime.

19.
Adv Mater ; 34(3): e2106954, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34766672

ABSTRACT

Multiresonance thermally activated delayed fluorescence (MR-TADF) emitters manifest great potential for organic light-emitting diodes (OLEDs) due to their high exciton-utilization efficiency and narrowband emission. Nonetheless, their tendency toward self-quenching caused by strong interchromophore interactions would induce doping sensitivity and deteriorate the device performances, and effective strategy to construct quenching-resistant emitters without sacrifycing color purity is still to be developed. By segregating the planar MR-TADF skeleton using two bulky carbazolyl units, herein a highly emissive molecule with enhanced quenching resistance is reported. The steric effect largely removes the formation of detrimental excimers/aggregates, and boosts the performance of the corresponding devices with a maximum external quantum efficiency (EQEmax ) up to 40.0% and full width at half maximum (FWHM) of 25 nm, representative of the only example of single OLED that can concurrently achieve narrow bandwidth and high EL efficiency surpassing 40% to date. Even at doping ratio of 30 wt%, the EQEmax is retained to be 33.3% with nearly unchanged emission spectrum. This work provides a viable approach to realize doping-insensitive MR-TADF devices with extreme EL efficiency and color purity for high-end OLED displays.

20.
Inorg Chem ; 60(24): 19001-19008, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34886665

ABSTRACT

A new Os(II) complex dyad featuring direct singlet-to-triplet (S-T) absorption and intramolecular triplet energy transfer (ITET) with lifetime up to 7.0 µs was designed to enhance triplet energy transfer efficiency during triplet-triplet annihilation upconversion (TTA-UC). By pairing with 9,10-bis(phenylethynyl)anthracene (BPEA) as a triplet acceptor, intense upconverted green emission in deaerated solution was observed with unprecedented TTA-UC emission efficiency up to 26.3% (with a theoretical maximum efficiency of 100%) under photoexcitation in the first biological transparency window (650-900 nm). Meanwhile, a 7.1% TTA-UC emission efficiency was acquired in an air-saturated hydrogel containing the photosensitizer and a newly designed hydrophilic BPEA derivative. This ITET mechanism would inspire further development of a highly efficient TTA-UC system for biological fields and renewable energy production.

SELECTION OF CITATIONS
SEARCH DETAIL
...