Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 474: 134810, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850936

ABSTRACT

Feathers are regarded as important nondestructive biomonitoring tools for bird pollutants. However, external contamination of feathers by different pollutants in different bird species remains unclear. In the present study, the feathers of 16 bird species, including terrestrial, freshwater, and marine birds, were analyzed for persistent organic pollutants (POPs). Bird feathers from an abandoned e-waste recycling site had higher POP concentrations and were more correlated with the POP muscle concentrations than those from the less polluted areas. The significant and positive POP correlations between the feathers and muscles of different species indicate that feathers are a good indicator of inter-species and spatial pollution. For individual species, the most hydrophobic POPs in feathers, such as hepta- to deca-polybrominated diphenyl ethers, had higher proportions than in muscles and worse correlations with muscle POPs compared with other POPs. Results of the chemical mass balance (CMB) model revealed that the gaseous phase, internal pollution, and atmospheric particle phase were the main contributors to low-, medium-, and high-hydrophobicity POPs in feathers, respectively. Overall, this study provides a preliminary but meaningful framework for distinguishing between internal and external contamination in feathers and gives information concerning the fitness of feathers as POP indicators with specific physicochemical properties.


Subject(s)
Birds , Environmental Monitoring , Feathers , Persistent Organic Pollutants , Animals , Feathers/chemistry , Species Specificity , Muscles/chemistry , Electronic Waste/analysis
2.
Environ Sci Technol ; 57(48): 20282-20291, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37966724

ABSTRACT

The atropisomeric enrichment of chiral polychlorinated biphenyls (PCBs) can trace the movement of PCBs through food webs, but it is a challenge to elucidate the prey uptake and stereoselective biotransformation of PCBs in different species. The present study investigated the concentrations and enantiomer fractions (EFs) of chiral PCBs in invertebrates, fishes, amphibians, and birds. Chiral PCB signature was estimated in total prey for different predators based on quantitative prey sources. The nonracemic PCBs in snakehead (Ophiocephalus argus) were mainly from prey. EFs of PCBs in amphibians and birds were mainly influenced by biotransformation, which showed enrichment of (+)-CBs 132 and 135/144 and different enantiomers of CBs 95 and 139/149. Biomagnification factors (BMFs) of chiral PCBs were higher than 1 for amphibians and passerine birds and lower than 1 for kingfisher (Alcedo atthis) and snakehead. BMFs were significantly correlated with EFs of chiral PCBs in predators and indicative of atropisomeric enrichment of PCBs across different species. Trophic magnification factors (TMFs) were higher in the riparian food web than in the aquatic food web because of the high metabolism capacity of chiral PCBs in aquatic predators. The results highlight the influences of species-specific prey sources and biotransformation on the trophic dynamics of chiral PCBs.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Food Chain , Fishes/metabolism , Biotransformation
3.
J Hazard Mater ; 457: 131733, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37269563

ABSTRACT

This study investigated the quantitative sources of persistent organic pollutants (POPs), their biomagnification factors, and their effect on POP biomagnification in a typical waterbird (common kingfisher, Alcedo atthis) food web in South China. The median concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in kingfishers were 32,500 ng/g lw and 130 ng/g lw, respectively. The congener profiles of PBDEs and PCBs showed significant temporal changes because of the restriction time points and biomagnification potential of different contaminants. The concentrations of most bioaccumulative POPs, such as CBs 138 and 180 and BDEs 153 and 154, decreased at lower rates than those of other POPs. Pelagic fish (metzia lineata) and benthic fish (common carp) were the primary prey of kingfishers, as indicated by quantitative fatty acid signature analysis (QFASA) results. Pelagic and benthic prey species were the primary sources of low and high hydrophobic contaminants for kingfishers, respectively. Biomagnification factors (BMFs) and trophic magnification factors (TMFs) had parabolic relationships with log KOW, with peak values of approximately 7. Significant negative correlations were found between the whole-body elimination rates of POPs in waterbirds and the log-transformed TMFs and BMFs, indicating that the strong metabolism of waterbirds could potentially affect POP biomagnification.


Subject(s)
Cypriniformes , Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Polychlorinated Biphenyls/analysis , Persistent Organic Pollutants/metabolism , Halogenated Diphenyl Ethers/metabolism , Bioaccumulation , Food Chain , Wetlands , Environmental Monitoring/methods , Environmental Pollutants/metabolism , Birds/metabolism , Fishes/metabolism , China , Cypriniformes/metabolism , Water Pollutants, Chemical/analysis
4.
Environ Sci Pollut Res Int ; 30(20): 58933-58943, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36997789

ABSTRACT

The distribution of 9 organophosphate flame retardants (OPFRs) was determined in plastic debris and soil samples separated from twenty soil samples collected from an abandoned e-waste recycling area. Tris-(chloroisopropyl) phosphate (TCPP) and triphenyl phosphate (TPhP) were the main chemicals, with median concentrations of 124-1930 ng/g and 143-1170 ng/g in soil, and 712-803 ng/g and 600-953 ng/g in plastics, respectively. Plastics contributed less than 10% of the total OPFR mass in bulk soil samples. No apparent OPFR distribution trend was observed in different sizes of plastics and soil. The ecological risks of plastics and OPFRs were estimated by the species sensitivity distributions (SSDs) method, which resulted in lower predicted no-effect concentrations (PNECs) of TPhP and decabromodiphenyl ether 209 (BDE 209) than the standard values derived from limited toxicity tests. In addition, the PNEC of polyethene (PE) was lower than the plastic concentration in the soil of a previous study. TPhP and BDE 209 had high ecological risks with risk quotients (RQs) > 0.1, and RQ of TPhP was among the highest values in literature.


Subject(s)
Electronic Waste , Flame Retardants , Soil , Flame Retardants/analysis , Organophosphates
5.
Environ Pollut ; 317: 120841, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36493935

ABSTRACT

Biomagnification of persistent organic pollutants (POPs) in food webs has been studied for many years. However, the different processes and influencing factors in biomagnification of POPs in aquatic and terrestrial food webs still need clarification. Polychlorinated biphenyls (PCBs) and short-chain chlorinated paraffins (SCCPs) were measured in organisms from adjacent terrestrial and aquatic environment in this study. The median levels of PCBs in terrestrial and aquatic organisms were 21.7-138 ng/g lw and 37.1-149 ng/g lw, respectively. SCCP concentrations were 18.6-87.3 µg/g lw and 21.4-93.9 µg/g lw in terrestrial and aquatic organisms, respectively. Biomagnification factors (BMFs) of PCBs increased with higher log KOW in all food chains. BMFs of SCCPs were negatively correlated with log KOW in aquatic food chains, but positively correlated with log KOW in terrestrial food chains. The terrestrial food web had similar trophic magnification factors (TMFs) of PCBs, and higher TMFs of SCCPs than the aquatic food web. Biomagnification of PCBs was consistent in aquatic and terrestrial food webs, while SCCPs had higher biomagnification potential in terrestrial than aquatic organisms. The distinct biomagnification of SCCPs was affected by the respiratory elimination for terrestrial organisms, the different metabolism rates in various species, and more homotherms in terrestrial food webs. Fugacity model can well predict levels of less hydrophobic chemicals, and warrants more precise toxicokinetic data of SCCPs.


Subject(s)
Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Water Pollutants, Chemical , Food Chain , Polychlorinated Biphenyls/metabolism , Persistent Organic Pollutants/metabolism , Bioaccumulation , Water Pollutants, Chemical/analysis , Environmental Monitoring , Aquatic Organisms/metabolism , Paraffin/analysis , Hydrocarbons, Chlorinated/analysis
6.
Environ Pollut ; 306: 119433, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35550129

ABSTRACT

Biomagnification of persistent toxic substances (PTSs) in food chains is of environmental concern, but studies on biotransport of PTSs across aquatic and riparian food chains are still incomplete. In this study, biomagnification of several PTSs including methylmercury (MeHg), polybrominated diphenyl ethers (PBDEs), and 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE) was investigated in adjacent aquatic and riparian food webs. Concentrations of MeHg and PBDEs ranged from 2.37 to 353 ng/g dry weight (dw) and not detected (Nd) to 65.1 ng/g lipid weight (lw) in riparian samples, respectively, and ranged from Nd to 705 ng/g dw and Nd to 187 ng/g lw in aquatic samples, respectively. Concentrations of MeHg were significantly correlated with δ13C (p < 0.01) rather than δ15N (p > 0.05) values in riparian organisms, while a significant correlation was observed between concentrations of MeHg and δ15N (p < 0.01) in aquatic organisms. Biomagnification factors (BMFs) and trophic magnification factors (TMFs) of PBDE congeners were similar in riparian and aquatic food webs, while BMFs and TMFs of MeHg were much higher in aquatic food web than those in riparian food web. The results indicate the biotransport of MeHg from aquatic insects to terrestrial birds, and δ13C can be a promising ecological indicator for biotransport of pollutants across ecosystems.


Subject(s)
Flame Retardants , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Fishes , Flame Retardants/analysis , Food Chain , Halogenated Diphenyl Ethers/analysis , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 707: 136119, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31869616

ABSTRACT

Increasing amount of plastic debris stranded on beach can introduce many foreign substances, including organic pollutants into island ecosystems. In the present study, stranded foams were collected from an island located in South China Sea, to investigate the levels and profiles of several flame retardants (FRs) and plasticizers, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), emerging brominated FRs, and dechlorane plus (DP). The concentrations of PBDEs and OPEs in plastic debris ranged from not detected (ND, <0.60 ng/g) to 0.46 mg/g and from ND (<0.70 ng/g) to 17.3 mg/g, respectively. The high levels of PBDEs and OPEs were expected as the fact that PBDEs and OPEs were incorporated additives in plastics. OPEs were the main chemicals in most of foams. Brominated FRs dominated in some samples. Core and surface parts in foams had similar composition profiles of pollutants. Significantly higher concentrations of tris(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPHP) were observed in surface samples than core samples (p < .05). TCEP and TPHP in foam surface seem to be from both incorporated additives and adsorbed chemicals from environmental matrices. The density of pollutants introduced by stranded foams in sampling area was estimated in comparison with air deposition of pollutants. The high loading of pollutants in stranded foams indicates that foams can be potential sources for organic pollutants, especially incorporated plastic additives, in islands.

SELECTION OF CITATIONS
SEARCH DETAIL
...