Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 163, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167945

ABSTRACT

Monocarboxylate transporter 1 (MCT1) exhibits essential roles in cellular metabolism and energy supply. Although MCT1 is highly expressed in activated B cells, it is not clear how MCT1-governed monocarboxylates transportation is functionally coupled to antibody production during the glucose metabolism. Here, we report that B cell-lineage deficiency of MCT1 significantly influences the class-switch recombination (CSR), rendering impaired IgG antibody responses in Mct1f/fMb1Cre mice after immunization. Metabolic flux reveals that glucose metabolism is significantly reprogrammed from glycolysis to oxidative phosphorylation in Mct1-deficient B cells upon activation. Consistently, activation-induced cytidine deaminase (AID), is severely suppressed in Mct1-deficient B cells due to the decreased level of pyruvate metabolite. Mechanistically, MCT1 is required to maintain the optimal concentration of pyruvate to secure the sufficient acetylation of H3K27 for the elevated transcription of AID in activated B cells. Clinically, we found that MCT1 expression levels are significantly upregulated in systemic lupus erythematosus patients, and Mct1 deficiency can alleviate the symptoms of bm12-induced murine lupus model. Collectively, these results demonstrate that MCT1-mediated pyruvate metabolism is required for IgG antibody CSR through an epigenetic dependent AID transcription, revealing MCT1 as a potential target for vaccine development and SLE disease treatment.


Subject(s)
B-Lymphocytes , Immunoglobulin Class Switching , Animals , Humans , Mice , Acetylation , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Glucose/metabolism , Immunoglobulin Isotypes , Pyruvates/metabolism
2.
J Invest Dermatol ; 142(10): 2744-2755.e9, 2022 10.
Article in English | MEDLINE | ID: mdl-35469906

ABSTRACT

Sequence variation in SLC45A2 are responsible for oculocutaneous albinism type 4 in many species and are associated with melanoma susceptibility, but the molecular mechanism is unclear. In this study, we used Slc45a2-deficient melanocyte and mouse models to elucidate the roles of SLC45A2 in melanogenesis and melanoma metastasis. We found that the acidified cellular environment impairs the activity of key melanogenic enzyme tyrosinase in Slc45a2-deficient melanocytes. SLC45A2 is identified as a proton/glucose exporter in melanosomes, and its ablation increases the acidification of melanosomal pH through enhanced glycolysis. Intriguingly, 13C-glucose-labeled metabolic flux and biochemical assays show that melanosomes are active glucose-metabolizing organelles, indicating that elevated glycolysis mainly occurs in melanosomes owing to Slc45a2 deficiency. Moreover, Slc45a2 deficiency significantly upregulates the activities of glycolytic enzymes and phosphatidylinositol 3-kinase/protein kinase B signaling to promote glycolysis-dependent survival and metastasis of melanoma cells. Collectively, our study reveals that the proton/glucose exporter SLC45A2 mediates melanin synthesis and melanoma metastasis primarily by modulating melanosomal glucose metabolism.


Subject(s)
Melanoma , Melanosomes , Animals , Glucose/metabolism , Glycolysis , Hydrogen-Ion Concentration , Melanins/metabolism , Melanocytes/metabolism , Melanoma/genetics , Melanoma/metabolism , Melanosomes/metabolism , Mice , Monophenol Monooxygenase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Protons
3.
Asian J Pharm Sci ; 15(2): 131-144, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32373195

ABSTRACT

Solute carriers (SLCs) are the largest family of transmembrane transporters that determine the exchange of various substances, including nutrients, ions, metabolites, and drugs across biological membranes. To date, the presence of about 287 SLC genes have been identified in the brain, among which mutations or the resultant dysfunctions of 71 SLC genes have been reported to be correlated with human brain disorders. Although increasing interest in SLCs have focused on drug development, SLCs are currently still under-explored as drug targets, especially in the brain. We summarize the main substrates and functions of SLCs that are expressed in the brain, with an emphasis on selected SLCs that are important physiologically, pathologically, and pharmacologically in the blood-brain barrier, astrocytes, and neurons. Evidence suggests that a fraction of SLCs are regulated along with the occurrences of brain disorders, among which epilepsy, neurodegenerative diseases, and autism are representative. Given the review of SLCs involved in the onset and procession of brain disorders, we hope these SLCs will be screened as promising drug targets to improve drug delivery to the brain.

4.
Protein Cell ; 10(6): 436-449, 2019 06.
Article in English | MEDLINE | ID: mdl-30324491

ABSTRACT

Zinc levels are high in pancreatic ß-cells, and zinc is involved in the synthesis, processing and secretion of insulin in these cells. However, precisely how cellular zinc homeostasis is regulated in pancreatic ß-cells is poorly understood. By screening the expression of 14 Slc39a metal importer family member genes, we found that the zinc transporter Slc39a5 is significantly down-regulated in pancreatic ß-cells in diabetic db/db mice, obese ob/ob mice and high-fat diet-fed mice. Moreover, ß-cell-specific Slc39a5 knockout mice have impaired insulin secretion. In addition, Slc39a5-deficient pancreatic islets have reduced glucose tolerance accompanied by reduced expression of Pgc-1α and its downstream target gene Glut2. The down-regulation of Glut2 in Slc39a5-deficient islets was rescued using agonists of Sirt1, Pgc-1α and Ppar-γ. At the mechanistic level, we found that Slc39a5-mediated zinc influx induces Glut2 expression via Sirt1-mediated Pgc-1α activation. These findings suggest that Slc39a5 may serve as a possible therapeutic target for diabetes-related conditions.


Subject(s)
Cation Transport Proteins/physiology , Diabetes Mellitus/metabolism , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Obesity/metabolism , Animals , Glucose Transporter Type 2/metabolism , Insulin Secretion , Insulin-Secreting Cells/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sirtuin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...