Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 27(18): 22698-22707, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32323226

ABSTRACT

Little information is available on thallium (Tl) adsorption onto fruit-derived biochar. In this study, pomelo peel and waste pomelo were thus chosen to prepare two kinds of biochars recorded as PPB and WPB. The two produced biochars subsequently evaluated their potential remediation of thallium (Tl) contamination in agricultural soils by their Tl adsorption capacity. Results showed that the two pomelo-derived biochars presented obvious microporous structure and rich oxygen-containing functional group, supported by the observant data of specific surface area, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Furthermore, Langmuir isothermal adsorption model can better fit the adsorption behavior of thallium onto PPB and WPB, and the subsequent maximum adsorption capacity was 4283.9 µg g-1 and 5286.0 µg g-1, respectively. In addition, the pseudo-second-order kinetic model could well fit the kinetic behavior of thallium adsorption onto PPB and WPB, indicating that the process is accompanied by chemical adsorption. Meanwhile, in agricultural soils, PPB and WPB can be used as environmentally friendly adsorbents to remediate Tl contamination due to their pH increase of the tested soils and their comparable adsorption ability of Tl. The obtained findings can provide insights into comprehensively developed fruit-derived biochar technology to remediate Tl contamination in agricultural soils.


Subject(s)
Soil , Thallium/analysis , Adsorption , Charcoal , Fruit/chemistry , Kinetics , Spectroscopy, Fourier Transform Infrared
2.
J Environ Sci (China) ; 85: 168-176, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31471023

ABSTRACT

Cadmium (Cd) and arsenic (As) are two of the most toxic elements. However, the chemical behaviors of these two elements are different, making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(II) and As(V) removal. To solve this problem, we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB), a novel ternary material, to perform this task, wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties. The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(II) and 35.59 mg/g for As(V), which is much higher compared to pristine biochar (11.06 mg/g, 0 mg/g for Cd(II) and As(V), respectively). The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(II) to HFMB, while ligand exchange was the adsorption mechanism that bound As(V).


Subject(s)
Arsenic/chemistry , Cadmium/chemistry , Environmental Pollutants/chemistry , Charcoal , Oxides/chemistry
3.
Environ Sci Pollut Res Int ; 25(18): 17980-17988, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29687196

ABSTRACT

Although thallium (Tl) is a highly toxic element, little information is available on the environmental risks of Tl in agricultural soils with intensive practices, particularly nearby mining sites. Therefore, we investigated the potential release of Tl in acidic soils with intensive cultivation nearby a waste copper mining site from southern China based on its level and chemical fractions as well as simulated release under artificial acid rain. Results showed that the average Tl content was 1.31 mg/kg in the studied area, which significantly exceeds the permissible thallium value of 1 mg/kg for agricultural soil in China. Some vertical increases of soil Tl from different land uses indicate the potential transport of Tl downward to groundwater. High positive correlations between surficial soil Tl and rubidium (Rb) and copper (Cu) indicated that Tl has the lithophile and chalcophile behavior. Tl in soils is mainly entrapped in residual fraction. The exchangeable fraction of Tl in agricultural soils was less than undisturbed natural soils and copper mined soils. Additionally, the percentage of Tl release from undisturbed natural soils and soils of copper ore area was more than that from agricultural soils in simulated acid rain. Furthermore, the releases of Tl from the soils increased with the acidity of artificial acid rain. Thus, more attention must be paid to land management of this similar area to avoid the risk of Tl impact on human health.


Subject(s)
Copper/chemistry , Soil Pollutants/analysis , Soil/chemistry , Thallium/analysis , Acid Rain , Agriculture , China , Humans , Mining , Soil Pollutants/chemistry , Thallium/chemistry
4.
J Hazard Mater ; 266: 182-8, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24412626

ABSTRACT

The contamination of Pb in agricultural soils is one of the most important ecological problems, which potentially results in serious health risk on human health through food chain. Hence, the fate of exogenous Pb contaminated in agricultural soils is needed to be deeply explored. By spiking soils with the stable enriched isotopes of (206)Pb, the contamination of exogenous Pb(2+) ions in three agricultural soils sampled from the estuary areas of Jiulong River, China was simulated in the present study, and the distribution, mobility and bioavailability of exogenous Pb in the soils were investigated using the isotopic labeling method coupled with a four-stage BCR (European Community Bureau of Reference) sequential extraction procedure. Results showed that about 60-85% of exogenous Pb was found to distribute in reducible fractions, while the exogenous Pb in acid-extractable fractions was less than 1.0%. After planting, the amounts of exogenous Pb presenting in acid-extractable, reducible and oxidizable fractions in rhizospheric soils decreased by 60-66%, in which partial exogenous Pb was assimilated by plants while most of the metal might transfer downward due to daily watering and applying fertilizer. The results show that the isotopic labeling technique coupled with sequential extraction procedures enables us to explore the distribution, mobility and bioavailability of exogenous Pb contaminated in soils, which may be useful for the further soil remediation.


Subject(s)
Lead/analysis , Soil Pollutants/analysis , Agriculture , Biological Availability , Isotopes , Lead/chemistry , Lead/metabolism , Mustard Plant/metabolism , Soil Pollutants/chemistry , Soil Pollutants/metabolism
5.
J Environ Monit ; 14(8): 2230-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22772653

ABSTRACT

Pollution of Pb in the surface of agricultural soils is of increasing concern due to its serious impact on the plant growth and the human health through the food chain. However, the mobility, activity and bioavailability of Pb rely mainly on its various chemical species in soils. In the present study, E and L values, the labile pools of isotopically exchangeable Pb, were estimated using the method of isotope dilution in three vegetable-growing soils. The experiments involved adding a stable enriched isotope ((206)Pb > 96%) to a soil suspension and to soils in which plants are subsequently grown, the labile pools of Pb were then estimated by measuring the isotopic composition of Pb in soil solutions and in the plant tissues, respectively. In addition, the correlation of E values and soil pH was investigated at the ranges of pH 4.5-7.0. The amount of labile Pb in soils was also estimated using different single chemical extractants and a modified BCR approach. The results showed that after spiking the enriched isotopes of (206)Pb (>96%) for 24 hours an equilibration of isotopic exchanges in soil suspensions was achieved, and the isotope ratios of (208)Pb/(206)Pb measured at that time was used for calculating the E(24 h) values. The labile pools of Pb by %E(24 h) values, ranging from 53.2% to 61.7% with an average 57%, were found to be significantly higher (p < 0.05) than the values estimated with L values, single chemical extractants and the Σ(BCR) values obtained with the BCR approach, respectively. A strong negative correlation (R(2) = 0.984) between E(24 h) values and soil pH was found in the tested soil sample. The results indicate that the %E(24 h) value can more rapidly and easily predict the labile pools of Pb in soils compared with L values, but it might be readily overestimated because of the artificial soil acidity derived from the spiked isotopic tracer and the excess of spiked enriched isotopes. The results also suggest that the amounts of Pb extracted with EDTA and the Σ(BCR) values extracted with the modified BCR approach are helpful to detect the labile pools of Pb in soils. In addition, the negative correlation between soil pH and the labile pools of Pb in soils may be useful for further remediation to reduce the bioavailability of Pb in contaminated soils.


Subject(s)
Environmental Monitoring/methods , Lead/analysis , Soil Pollutants/analysis , Soil/chemistry , Edetic Acid/chemistry , Hydrogen-Ion Concentration , Lead/chemistry , Radioisotope Dilution Technique , Soil Pollutants/chemistry , Vegetables/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...