Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7766, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012167

ABSTRACT

Using highly sensitive and selective in situ techniques to investigate the dynamics of intermediates formation is key to better understand reaction mechanisms. However, investigating the early stages of solid-state reactions/transformations is still challenging. Here we introduce in situ fluorescence spectroscopy to observe the evolution of intermediates during a two-step [2 + 2] photocycloaddition process in a coordination polymer platform. The structural changes and kinetics of each step under ultraviolet light irradiation versus time are accompanied by the gradual increase-decrease of intensity and blue-shift of the fluorescence spectra from the crystals. Monitoring the fluorescence behavior using a laser scanning confocal microscope can directly visualize the inhomogeneity of the photocycloaddition reaction in a single crystal. Theoretical calculations allow us to rationalize the fluorescence behavior of these compounds. We provide a convenient strategy for visualizing the solid-state photocycloaddition dynamics using fluorescence spectroscopy and open an avenue for kinetic studies of a variety of fast reactions.

2.
CNS Neurosci Ther ; 29(11): 3430-3445, 2023 11.
Article in English | MEDLINE | ID: mdl-37308741

ABSTRACT

AIMS: Glioblastoma multiforme (GBM) is the deadliest glioma and its resistance to temozolomide (TMZ) remains intractable. Long non-coding RNAs (lncRNAs) play crucial roles in that and this study aimed to investigate underlying mechanism of HOXD-AS2-affected temozolomide sensitivity in glioblastoma. METHODS: We analyzed and validated the aberrant HOXD-AS2 expression in glioma specimens. Then we explored the function of HOXD-AS2 in vivo and in vitro and a clinical case was also reviewed to examine our findings. We further performed mechanistic experiments to investigate the mechanism of HOXD-AS2 in regulating TMZ sensitivity. RESULTS: Elevated HOXD-AS2 expression promoted progression and negatively correlated with prognosis of glioma; HOXD-AS2 attenuated temozolomide sensitivity in vitro and in vivo; The clinical case also showed that lower HOXD-AS2 sensitized glioblastoma to temozolomide; STAT3-induced HOXD-AS2 could interact with IGF2BP2 protein to form a complex and sequentially upregulate STAT3 signaling, thus forming a positive feedback loop regulating TMZ sensitivity in glioblastoma. CONCLUSION: Our study elucidated the crucial role of the HOXD-AS2-STAT3 positive feedback loop in regulating TMZ sensitivity, suggesting that this could be provided as a potential therapeutic candidate of glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , MicroRNAs , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/genetics , Feedback , Drug Resistance, Neoplasm , Cell Line, Tumor , Brain Neoplasms/genetics , MicroRNAs/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Gene Expression Regulation, Neoplastic , RNA-Binding Proteins/metabolism , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...