Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
J Colloid Interface Sci ; 678(Pt C): 1-12, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276683

ABSTRACT

Semiconductors, such as metal oxides and metal sulfides (MSX), are widely investigated as effectively catalytic materials to convert carbon dioxide (CO2) and water into chemicals under simulated solar light. These valuable investigations might address both the energy crisis and climate change in our modern society. Herein, a novel strategy to construct leaf-like heterojunctions of VS-ZnIn2S4/TiN-x is reported. The new semiconductor heterojunctions were then applied to photoelectrocatalytic CO2 reduction, achieving excellent performance (formate formation rate of 1173.2 µM h-1 cm-2) attributed to the plant cell-like morphology and enhanced electron mobility from the heterojunction interfaces to the active sites on the surface. Our findings suggest that titanium nitride (TiN) with good conductivity can improve the photoelectrocatalytic ability of MSX through heterojunction construction. The photocathode VS-ZnIn2S4/TiN-3 exhibits 81.0 % selectivity toward C2 products by optimizing the material structure and reaction conditions. According to the systematic investigation of operando Fourier transform infrared (FTIR) spectra, common intermediates such as *COO-, *COOH, *CO, *CHO, *COCHO, and *COCH3 reported in the literature were carefully verified. Among these, the carbene specie serve as the key intermediate responsible for generating other intermediates and resulting in all products.

2.
J Colloid Interface Sci ; 666: 141-150, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38593649

ABSTRACT

The defects and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials to enhance catalytic performance. In this study, we report a new MOFs-driven porous Cu2S/MoS2-Vs octahedral semiconductor with heterostructure and photothermal effect. The introduction of sulfur vacancies directly improves the adsorption performance of CO2, and the formation of heterostructure significantly increases the charge transfer rate. The C-penetrating material obtained from MOFs not only acts as an octahedral skeleton support, but also gives photothermal effects under photoelectric conditions. The formation rate of sole C2 products in photoelectrocatalytic CO2 reduction by using Cu2S/MoS2-Vs heterostructure is up to 52 µM·h-1·cm-2 equal to the total electron transfer rate of 541 µM·h-1·cm-2. The carbene mechanism and reaction pathways were proposed and verified by 13CO2 isotopic labelling and operando Fourier transform infrared (FT-IR) spectra. The important intermediates of *CO2-, *CO, *CHO and *CHO-CHO were identified by operando FT-IR spectra. In the comparative experiments, the photothermal electrons are beneficial to C2 products. DFT calculations indicate that the presence of S vacancies (Vs) reduces the energy barrier for product generation.

3.
iScience ; 23(1): 100768, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31887657

ABSTRACT

Nowadays, photoelectrocatalytic (PEC) reduction of CO2 represents a very promising solution for storing solar energy in value-added chemicals, but so far it has been hampered by the lack of highly efficient catalyst of photocathode. Enlightened by the Calvin cycle of plants, here we show that a series of three-dimensional C/N-doped heterojunctions of Znx:Coy@Cu are successfully fabricated and applied as photocathodes in the PEC reduction of CO2 to generate paraffin product. These materials integrate semiconductors of p-type Co3O4 and n-type ZnO on Cu foam to construct fine heterojunctions with multiple active sites, which result in excellent C-C coupling control in reduction of CO2. The best catalyst of Zn0.2:Co1@Cu yields paraffin at a rate of 325 µg·h-1 under -0.4 V versus saturated calomel electrode without H2 release. The apparent quantum efficiency of PEC cell is up to 1.95%.

4.
RSC Adv ; 9(6): 3396-3402, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-35518949

ABSTRACT

Designing a highly active and stable photocatalyst to directly solve environmental pollution is desirable for solar energy conversion. Herein, an effective strategy, hydrothermal-calcination, for synthesizing extremely active carbon nitride (salmon pink) from a low-cost precursor melamine, is reported. The salmon pink carbon nitride with tube-shaped structure significantly enhanced response to visible light, improved efficiency of charge separation and remarkably enhanced efficiency of methyl orange (MO) degradation than bulk g-C3N4 (light orange). The M-10-200-24-600 composite possessed the most wonderful ability towards MO degradation irradiated by visible light, which could achieve a highest degradation efficiency of 84% within 120 min. Our findings may provide a promising and facile approach to highly efficient photocatalysis for solar-energy conversion.

5.
RSC Adv ; 8(59): 33993-33999, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-35548809

ABSTRACT

The production of H2 from water using photocatalysts is a promising way of generating clean, renewable and alternative energy. The key issue is to develop active and stable photocatalysts. Here, we report a novel CdS/Pt/Mo2C heterostructure photocatalyst, where Pt nanoparticles are closely supported on CdS/Mo2C. The UV-vis spectrum and EIS Nyquist plots show that Mo2C can boost the absorption in the UV-vis region and improve the separation of the photogenerated electron-hole pairs from CdS. The Pt nanoparticles act as the active co-catalyst that promotes the transient photocurrent response. As a result, the CdS/Pt/Mo2C photocatalyst exhibits an excellent H2 evolution activity up to 1828.82 µmol h-1 g-1 under visible-light irradiation, 8.5 and 16.2 times higher than that of pristine CdS and CdS/Mo2C, respectively. Moreover, a high apparent quantum yield (AQY) of 9.39% is obtained at 400 nm for the CdS/Pt/Mo2C heterostructure photocatalyst.

6.
Biotechnol Appl Biochem ; 63(4): 490-6, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26095832

ABSTRACT

Malate dehydrogenase (MDH) ubiquitously exists in living organisms and has many isoforms in a single species. MDHs from some classes have been characterized for their catalytic properties, which show significant variations despite that they share high sequence identity for the active sites. One class MDH, the plastid-localized NAD-dependent MDH (plNAD-MDH) is known to be important for plant survival in a dark environment, but its biochemical and enzymatic properties have not been well characterized. This study attempts to fill the gap. plNAD-MDH was expressed in an Escherichia coli system and purified using nickel-affinity chromatography followed by size exclusion chromatography. The N-terminal fusion his-tag was removed by protease cleavage. The gel filtration assay and glutaraldehyde cross-linking results showed that the active enzyme was a homodimer in solution. Further assay indicated that plNAD-MDH is most active at a neutral pH value. The Km values for oxaloacetate and NADH are found in the submillimolar order, a median range for most MDHs. The maximum reaction rate values, however, are dramatically different from other plant MDHs, indicating that plNAD-MDH has different substrate specificity. Moreover, we obtained crystals for this enzyme, which laid the groundwork for further analysis of the enzymatic mechanism from structural stand point.


Subject(s)
Arabidopsis/cytology , Malate Dehydrogenase/isolation & purification , Malate Dehydrogenase/metabolism , NAD/metabolism , Plastids/enzymology , Amino Acid Sequence , Arabidopsis/enzymology , Cross-Linking Reagents/pharmacology , Crystallization , Glutaral/pharmacology , Hydrogen-Ion Concentration , Kinetics , Malate Dehydrogenase/chemistry , Metals/pharmacology , Protein Transport , Substrate Specificity
7.
BMC Genomics ; 13: 382, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22876864

ABSTRACT

BACKGROUND: The fungus Marssonina brunnea is a causal pathogen of Marssonina leaf spot that devastates poplar plantations by defoliating susceptible trees before normal fall leaf drop. RESULTS: We sequence the genome of M. brunnea with a size of 52 Mb assembled into 89 scaffolds, representing the first sequenced Dermateaceae genome. By inoculating this fungus onto a poplar hybrid clone, we investigate how M. brunnea interacts and co-evolves with its host to colonize poplar leaves. While a handful of virulence genes in M. brunnea, mostly from the LysM family, are detected to up-regulate during infection, the poplar down-regulates its resistance genes, such as nucleotide binding site domains and leucine rich repeats, in response to infection. From 10,027 predicted proteins of M. brunnea in a comparison with those from poplar, we identify four poplar transferases that stimulate the host to resist M. brunnea. These transferas-encoding genes may have driven the co-evolution of M. brunnea and Populus during the process of infection and anti-infection. CONCLUSIONS: Our results from the draft sequence of the M. brunnea genome provide evidence for genome-genome interactions that play an important role in poplar-pathogen co-evolution. This knowledge could help to design effective strategies for controlling Marssonina leaf spot in poplar.


Subject(s)
Ascomycota/genetics , Biological Evolution , Genome, Fungal , Host-Pathogen Interactions , Populus/microbiology , Ascomycota/pathogenicity , Gene Expression Profiling , Molecular Sequence Annotation , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Populus/genetics , RNA, Fungal/genetics , Sequence Analysis, DNA
8.
Proteomics ; 10(13): 2406-17, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20391531

ABSTRACT

Marssonina brunnea is an important fungal pathogen of the Populus genus. To further our understanding of the pathogenesis of M. brunnea, we initiated a proteome-level study of the fungal secretome. Using de novo peptide sequencing by MS/MS, we obtained peptide sequences for 32 protein spots. Four proteins were identified by sequence homology to conserved proteins in public databases using MS-driven BLAST. To identify additional protein spots, we combined a degenerate PCR method, based on the Consensus-DEgenerate Hybrid Oligonucleotide Primer (CODEHOP) method, and a rapid amplification of cDNA ends method to clone the full-length cDNA fragments encoding the proteins identified in the gel. Using this method, we cloned the full-length cDNA fragments encoding 11 M. brunnea-specific proteins. This method provides an efficient approach to identification of species-specific proteins of non-sequenced organisms. Furthermore, we analyzed the expression patterns of these genes during infection. We found that most of the identified secreted proteins could be induced in artificial medium after hyphae entered poplar apoplast spaces. We propose that for the host-specialized M. brunnea, the elongation of hyphae has evolved closely with the secretion of apoplastic proteins.


Subject(s)
Ascomycota/chemistry , Fungal Proteins/analysis , Amino Acid Sequence , Ascomycota/metabolism , Ascomycota/ultrastructure , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Fungal Proteins/genetics , Microscopy, Electron, Scanning , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction
9.
J Genet Genomics ; 35(10): 631-8, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18937920

ABSTRACT

Polygalacturonase-inhibiting proteins (PGIPs) are extracellular proteins that belong to the leucine-rich repeat (LRR) protein superfamily. PGIPs inhibit fungal polygalacturonases (PGs) and promote accumulation of oligogalacturonides, which activate plant defense responses. PGIPs play important roles in resistance to infection of pathogens. In this study, reverse transcriptase-polymerase chain reaction (RT-PCR) and RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) were used to isolate the full-length PGIP cDNA from Populus deltoides (GenBank accession no. of PdPGIP2 and PdPGIP4: EF684913 and EF684912). Domain analysis revealed that the deduced amino acid sequences of PdPGIP2 and PdPGIP4 had a typical PGIP topology. Phylogenetic analysis of known PGIPs indicated that the two PdPGIPs were clustered to the defense-related PGIP clade. Using real-time RT-PCR, the expression patterns of the two PdPGIPs following treatment with a fungal pathogen and defense-related signaling molecules were studied. The expression levels of PdPGIP2 and PdPGIP4 were both up-regulated when inoculated with the phytopathogenic fungus Marssonina brunnea. Therefore, it was proposed that the two PGIPs might be involved in the resistance to Marssonina brunnea in P. deltoides.


Subject(s)
Genes, Plant , Plant Proteins/genetics , Populus/genetics , Amino Acid Sequence , Cloning, Molecular , Conserved Sequence , DNA, Complementary/genetics , Gene Expression Regulation, Plant/drug effects , Molecular Sequence Data , Phylogeny , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , Populus/drug effects , Populus/physiology , Signal Transduction/genetics , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL