Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38187527

ABSTRACT

Advancements in microscopy techniques and computing technologies have enabled researchers to digitally reconstruct brains at micron scale. As a result, community efforts like the BRAIN Initiative Cell Census Network (BICCN) have generated thousands of whole-brain imaging datasets to trace neuronal circuitry and comprehensively map cell types. This data holds valuable information that extends beyond initial analyses, opening avenues for variation studies and robust classification of cell types in specific brain regions. However, the size and heterogeneity of these imaging data have historically made storage, sharing, and analysis difficult for individual investigators and impractical on a broad community scale. Here, we introduce the Brain Image Library (BIL), a public resource serving the neuroscience community that provides a persistent centralized repository for brain microscopy data. BIL currently holds thousands of brain datasets and provides an integrated analysis ecosystem, allowing for exploration, visualization, and data access without the need to download, thus encouraging scientific discovery and data reuse.

2.
Methods Mol Biol ; 1945: 251-264, 2019.
Article in English | MEDLINE | ID: mdl-30945250

ABSTRACT

This chapter describes the procedures necessary to create generative models of the spatial organization of cells directly from microscope images and use them to automatically provide geometries for spatial simulations of cell processes and behaviors. Such models capture the statistical variation in the overall cell architecture as well as the number, shape, size, and spatial distribution of organelles and other structures. The different steps described include preparing images, learning models, evaluating model quality, creating sampled cell geometries by various methods, and combining those geometries with biochemical model specifications to enable simulations.


Subject(s)
Cells/ultrastructure , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Computer Simulation , Humans , Models, Biological , Organelles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...