Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(4): 2343-2350, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38284895

ABSTRACT

This work describes the possibility to combine multicomponent chemistry and multienzymes cascade transformations in a unique reactive framework to yield highly functionalized 1,4-benzoxazines under favorable heterogeneous conditions. The synthetic scheme involved the generation in situ of electrophilic reactive quinone intermediates of tyrosol esters catalyzed by lipase M and tyrosinase followed by nucleophilic 1,6-Michael addition of selected α-amino acid methyl esters, and successive intramolecular lactonization and aromatization processes. The immobilization of the multienzymes cascade on electroactive lignin nanoparticles improved the sustainability and recyclability of the overall system.

2.
Int J Mol Sci ; 24(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37240391

ABSTRACT

A dual-target strategy was designed for the application of lignin nanoparticles in the lipase mediated biosynthesis of novel 3-O-ethyl-L-ascorbyl-6-ferulate and 3-O-ethyl-L-ascorbyl-6-palmitate and in their successive solvent-shift encapsulation in order to improve stability and antioxidant activity against temperature and pH-dependent degradation. The loaded lignin nanoparticles were fully characterized in terms of kinetic release, radical scavenging activity and stability under pH 3 and thermal stress (60 °C), showing improved antioxidant activity and high efficacy in the protection of ascorbic acid esters from degradation.


Subject(s)
Antioxidants , Ascorbic Acid , Ascorbic Acid/chemistry , Lignin , Esters , Lipase/metabolism
3.
ACS Biomater Sci Eng ; 9(6): 3597-3605, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37192401

ABSTRACT

Chitosan and lignin mixed nanoparticles were prepared by layer-by-layer and nanoprecipitation methodologies as responsive platforms for sustainable biosensors. The novel nanoparticles showed effective chemophysical and electrochemical properties dependent on the preparation methodology, molecular weight of chitosan, and type of lignin. HOMO-LUMO energy gap calculations suggested the presence of structure-activity relationships between the electrochemical responsiveness and the order and orientation of lignin aromatic subunits and chitosan chains in the nanodevices.


Subject(s)
Chitosan , Nanoparticles , Lignin/chemistry , Nanoparticles/chemistry , Structure-Activity Relationship
4.
ACS Omega ; 7(49): 45688-45696, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530325

ABSTRACT

Photoexcitation of pheomelanin produces high-energy singlet oxygen and the superoxide anion, which are reactive species in damage of cellular targets. In principle, these species can be involved in processes of synthetic utility when adequate experimental conditions are defined. Here, we describe that pheomelanin performs as a selective UVA antenna for the horseradish peroxidase oxidative coupling of substituted phenols to biologically active Pummerer's ketones under 2-methyltetrahydrofuran/buffer biphasic conditions. In this system, singlet oxygen is scavenged by conversion of 2-methyltetrahydrofuran into the corresponding organic hydroperoxide, while the superoxide anion is dismutated into hydrogen peroxide. Both these intermediates are able to oxidize the active site of horseradish peroxidase triggering the oxidative coupling reaction. Trimer derivatives, produced by addition of phenoxy radicals on preformed Pummerer's ketones were also isolated, suggesting the possibility to further improve the structural complexity of the reaction products.

5.
ACS Omega ; 7(42): 37070-37077, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312404

ABSTRACT

Sunscreen filters may be degraded after prolonged UV exposure with loss of their shielding property and generation of harmful radical species. They are contained in cosmetic formulations in high concentrations, so the improvement of photostability is of relevance for safety concerns. We report here that lignin nanoparticles are sustainable carriers and photostabilizers of two common UV chemical filters, namely, avobenzone and octyl methoxycinnamate. These compounds have been encapsulated by nanoprecipitation into kraft lignin nanoparticles using eco-certified dimethyl isosorbide as a primary solvent and deionized water as an antisolvent. After the encapsulation, both compounds significantly prolonged the half-life stability against UV irradiation. The stabilizing properties of lignin nanoparticles were further improved by coencapsulation of avobenzone and octyl methoxycinnamate with hydroxytyrosol, a natural phenol with antioxidant activity recovered from olive oil wastes and characterized by skin regenerative properties.

6.
Biosensors (Basel) ; 12(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35884322

ABSTRACT

The regulation of nervous and cardiovascular systems and some brain-related behaviors, such as stress, panic, anxiety, and depression, are strictly dependent on the levels of the main catecholamines of clinical interest, dopamine (DA), epinephrine (EP), and norepinephrine (NEP). Therefore, there is an urgent need for a reliable sensing device able to accurately monitor them in biological fluids for early diagnosis of the diseases related to their abnormal levels. In this paper, we present the first tyrosinase (Tyr)-based biosensor based on chitosan nanoparticles (ChitNPs) for total catecholamine (CA) detection in human urine samples. ChitNPs were synthetized according to an ionic gelation process and successively characterized by SEM and EDX techniques. The screen-printed graphene electrode was prepared by a two-step drop-casting method of: (i) ChitNPS; and (ii) Tyr enzyme. Optimization of the electrochemical platform was performed in terms of the loading method of Tyr on ChitNPs (nanoprecipitation and layer-by-layer), enzyme concentration, and enzyme immobilization with and without 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as cross-linking agents. The Tyr/EDC-NHS/ChitNPs nanocomposite showed good conductivity and biocompatibility with Tyr enzyme, as evidenced by its high biocatalytic activity toward the oxidation of DA, EP, and NEP to the relative o-quinone derivatives electrochemically reduced at the modified electrode. The resulting Tyr/EDC-NHS/ChitNPs-based biosensor performs interference-free total catecholamine detection, expressed as a DA concentration, with a very low LOD of 0.17 µM, an excellent sensitivity of 0.583 µA µM-1 cm-2, good stability, and a fast response time (3 s). The performance of the biosensor was successively assessed in human urine samples, showing satisfactory results and, thus, demonstrating the feasibility of the proposed biosensor for analyzing total CA in physiological samples.


Subject(s)
Biosensing Techniques , Chitosan , Nanoparticles , Biosensing Techniques/methods , Catecholamines , Chitosan/chemistry , Electrochemical Techniques/methods , Electrodes , Humans , Monophenol Monooxygenase , Nanoparticles/chemistry
7.
Biomacromolecules ; 23(8): 3154-3164, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35877659

ABSTRACT

Lignin nanoparticles containing saccharides from fishery wastes were prepared as sustainable biofillers for advanced materials. Organosolv lignin and Kraft lignin were used as polyphenol components in association with chitosan and chitooligosaccharides. The chemophysical and biological activities of lignin/saccharide nanoparticles, such as UV-shielding, antioxidant, and antimicrobial activities, were found to be dependent on both molecular weight and deacetylation degree of saccharides, with the best performance being obtained in the presence of low-molecular-weight and highly deacetylated chitooligosaccharides. In addition, chitooligosaccharides showed a synergistic antioxidant effect with lignins, associated with antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive).


Subject(s)
Anti-Infective Agents , Nanoparticles , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Chitin , Escherichia coli , Fisheries , Lignin/pharmacology
8.
Int J Mol Sci ; 23(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35682916

ABSTRACT

The overproduction of eumelanin leads to a panel of unaesthetic hyper-pigmented skin diseases, including melasma and age spots. The treatment of these diseases often requires the use of tyrosinase inhibitors, which act as skin whitening agents by inhibiting the synthesis of eumelanin, with harmful side effects. We report here that laccase from Trametes versicolor in association with a cocktail of natural phenol redox mediators efficiently degraded eumelanin from Sepia officinalis, offering an alternative procedure to traditional whitening agents. Redox mediators showed a synergistic effect with respect to their single-mediator counterpart, highlighting the beneficial role of the cocktail system. The pro-oxidant DHICA sub-units of eumelanin were degraded better than the DHI counterpart, as monitored by the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA) and pyrrole-2,3-dicarboxylic acid (PDCA) degradation products. The most effective laccase-mediated cocktail system was successively applied in a two-component prototype of a topical whitening cream, showing high degradative efficacy against eumelanin.


Subject(s)
Laccase , Skin Lightening Preparations , Laccase/metabolism , Melanins/metabolism , Skin Lightening Preparations/pharmacology , Trametes/metabolism
9.
ACS Omega ; 6(33): 21444-21456, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34471747

ABSTRACT

Lignin nanoparticles (LNPs) are applied in several industrial applications. The nanoprecipitation of LNPs is fast and inexpensive but currently still limited to the use of hazardous organic solvents, making it difficult to apply them on a large scale. Here, we report a scalable nanoprecipitation procedure for the preparation of colloidal lignin nanoparticles (cLNPs) by the use of the green solvents dimethylisosorbide and isopropylidene glycerol. Irrespective of the experimental conditions, cLNPs showed higher UV absorbing properties and radical scavenging activity than parent LNPs and raw lignin. cLNPs were successively used in the preparation of eco-friendly sunscreen formulations (SPF 15, 30, and 50+, as evaluated by the COLIPA assay), which showed high UV-shielding activity even in the absence of synthetic boosters (microplastics) and physical filters (TiO2 and ZnO). Biological assays on human HaCaT keratinocytes and human skin equivalents demonstrated the absence of cytotoxicity and genotoxicity, associated with an optimal protection of the skin from UV-A damage.

10.
Nanomaterials (Basel) ; 11(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809211

ABSTRACT

Novel nanoarchitectures based on lignin nanoparticles (LNPs) were designed and realized for electrochemical eco-friendly biosensing development. Two types of lignin nanoparticles were utilized for the modification of a gold bare electrode, namely organosolv (OLNPs) and kraft lignin (KLNPs) nanoparticles, synthetized from a sulfur-free and a sulfur lignin, respectively. The electrochemical behavior of LNP-modified electrodes was studied using two electrochemical techniques, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared to the gold bare electrode, an evident decrease in the faradaic current and increase of the ΔEp were observed in cyclic voltammograms. In addition, larger semicircles were registered in Nyquist plots. These results suggest a strong inhibition effect of the electron transfer reaction by LNPs layer, especially in the case of KLNPs. The modified electrodes, properly assembled with concanavalin A (ConA) and glucose oxidase (GOx), were successively tested as biosensing platforms for glucose, showing a sensitivity of (4.53 ± 0.467) and (13.74 ± 1.84) µA mM-1 cm2 for Au/SAMCys/OLNPs/ConA/GOx and Au/KLNPs/ConA/GOx biosensors, respectively. Finally, different layers of the KNLPs/ConA/GOx-modified Au electrode were tested, and the three-layered Au(KNLPs/ConA/GOx)3 showed the best analytical performance.

11.
Int J Mol Sci ; 22(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572316

ABSTRACT

Pyomelanin mimics from homogentisic acid (HGA) and gentisic acid (GA) were biosynthesized by the oxidative enzyme T. versicolor laccase at physiological pH to obtain water soluble melanins. The pigments show brown-black color, broad band visible light absorption, a persistent paramagnetism and high antioxidant activity. The EPR approach shows that at least two different radical species are present in both cases, contributing to the paramagnetism of the samples. This achievement can also shed light on the composition of the ochronotic pigment in the Alkaptonuria disease. On the other hand, these soluble pyomelanin mimics, sharing physico-chemical properties with eumelanin, can represent a suitable alternative to replace the insoluble melanin pigment in biotechnological applications.


Subject(s)
Antioxidants/pharmacology , Gentisates/pharmacology , Homogentisic Acid/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/metabolism , Biotechnology/methods , Fungal Proteins/metabolism , Gentisates/chemistry , Gentisates/isolation & purification , Gentisates/metabolism , Homogentisic Acid/chemistry , Homogentisic Acid/isolation & purification , Homogentisic Acid/metabolism , Laccase/metabolism , Melanins/chemistry , Polyporaceae/enzymology
12.
Antioxidants (Basel) ; 10(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578879

ABSTRACT

Green, biocompatible, and biodegradable antioxidants represent a milestone in cosmetic and cosmeceutical applications. Lignin is the most abundant polyphenol in nature, recovered as a low-cost waste from the pulp and paper industry and biorefinery. This polymer is characterized by beneficial physical and chemical properties which are improved at the nanoscale level due to the emergence of antioxidant and UV shielding activities. Here we review the use of lignin nanoparticles in cosmetic and cosmeceutical applications, focusing on sunscreen and antiaging formulations. Advances in the technology for the preparation of lignin nanoparticles are described highlighting structure activity relationships.

13.
RSC Adv ; 10(48): 29031-29042, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-35520043

ABSTRACT

Lignin nanoparticles (LNPs) acted as a renewable and efficient platform for the immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOX) by a layer by layer procedure. The use of concanavalin A as a molecular spacer ensured the correct orientation and distance between the two enzymes as confirmed by Förster resonance energy transfer measurement. Layers with different chemo-physical properties tuned in a different way the activity and kinetic parameters of the enzymatic cascade, with cationic lignin performing as the best polyelectrolyte in the retention of the optimal Con A aggregation state. Electrochemical properties, temperature and pH stability, and reusability of the novel systems have been studied, as well as their capacity to perform as colorimetric biosensors in the detection of glucose using ABTS and dopamine as chromogenic substrates. A boosting effect of LNPs was observed during cyclovoltammetry analysis. The limit of detection (LOD) was found to be better than, or comparable to, that previously reported for other HRP-GOX immobilized systems, the best results being again obtained in the presence of a cationic lignin polyelectrolyte. Thus renewable lignin platforms worked as smart and functional devices for the preparation of green biosensors in the detection of glucose.

14.
Biomacromolecules ; 20(5): 1975-1988, 2019 05 13.
Article in English | MEDLINE | ID: mdl-30925212

ABSTRACT

Reactive lignin nanocapsules catalyze a pigmentation reaction to furnish an innovative type of sustainable polyvalent bioink. In this nanodevice, the pigment, vehicle, binder, and additive are included in a single confined spherical space. Bioinks with different shades of color, black, gray, yellow-like, pink-like, and red/brown hues, have been prepared by selecting the reactants and the pigmentation process. Lignin nanocapsules play multiple functions in the support and activation of the enzyme necessary for the synthesis of pigments. Lignin nanocapsules protected the melanin pigment from alkaline and UV-degradation treatment.


Subject(s)
Ink , Laccase/metabolism , Lignin/analogs & derivatives , Melanins/chemistry , Monophenol Monooxygenase/metabolism , Nanocapsules/chemistry , Laccase/chemistry , Melanins/metabolism , Monophenol Monooxygenase/chemistry
15.
Biomacromolecules ; 19(9): 3883-3893, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30088918

ABSTRACT

Microcapsules and nanocapsules based on the contemporary presence of sulfonate lignin and tannic acid have been prepared by the layer-by-layer procedure, using MnCO3 or organosolv lignin as core templates, and polydiallyldimethylammonium chloride or chitosan as positive charged supporting layers. Nanocapsules and microcapsules of mixed polyphenols showed antioxidant activity, UV-shielding properties, and electrochemical responsiveness, higher than that in homopolymer nanocapsule counterparts and of the native polyphenols, suggesting the presence of synergistic effects between the two components. The presence of UV-visible bathochromic shift suggested the formation of J-aggregates characterized by an orientation of the adjacent phenolic rings parallel to the longitudinal direction of the layer, with a head-to-tail like arrangement. Moreover, nanocapsules of mixed polyphenols showed an aggregation state higher than that observed in references, the specific morphology of their surface being dependent on the structural arrangement of the different components.


Subject(s)
Antioxidants/administration & dosage , Capsules/chemistry , Nanocapsules/chemistry , Radiation-Protective Agents/administration & dosage , Capsules/chemical synthesis , Free Radicals/chemistry , Lignin/chemistry , Polyphenols/chemistry , Tannins/chemistry , Ultraviolet Rays
16.
Nanomaterials (Basel) ; 8(6)2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29914085

ABSTRACT

Sustainable catalysts for the oxidation of phenol derivatives under environmentally friendly conditions were prepared by the functionalization of lignin nanoparticles with tyrosinase. Lignin, the most abundant polyphenol in nature, is the main byproduct in the pulp and paper manufacturing industry and biorefinery. Tyrosinase has been immobilized by direct adsorption, encapsulation, and layer-by-layer deposition, with or without glutaraldehyde reticulation. Lignin nanoparticles were found to be stable to the tyrosinase activity. After the enzyme immobilization, they showed a moderate to high catalytic effect in the synthesis of catechol derivatives, with the efficacy of the catalyst being dependent on the specific immobilization procedures.

17.
J Nat Prod ; 80(12): 3247-3254, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29236486

ABSTRACT

Different catechol and pyrogallol derivatives have been synthesized by oxidation of coumarins with 2-iodoxybenzoic acid (IBX) in DMSO at 25 °C. A high regioselectivity was observed in accordance with the stability order of the incipient carbocation or radical benzylic-like intermediate. The oxidation was also effective in water under heterogeneous conditions by using IBX supported on polystyrene. The new derivatives showed improved antioxidant effects in the DPPH test and inhibitory activity against the influenza A/PR8/H1N1 virus. These data represent a new entry for highly oxidized coumarins showing an antiviral activity possibly based on the control of the intracellular redox value.


Subject(s)
Antioxidants/chemistry , Antiviral Agents/chemistry , Coumarins/chemistry , Influenza A Virus, H1N1 Subtype/drug effects , Iodobenzenes/chemistry , A549 Cells , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Catechols/chemistry , Catechols/pharmacology , Cell Line, Tumor , Coumarins/pharmacology , Humans , Iodobenzenes/pharmacology , Oxidation-Reduction/drug effects , Polystyrenes/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...