Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 64(5): 100362, 2023 05.
Article in English | MEDLINE | ID: mdl-36958722

ABSTRACT

Cholesterol biosynthesis is a highly regulated pathway, with over 20 enzymes controlled at the transcriptional and posttranslational levels. While some enzymes remain stable, increased sterol levels can trigger degradation of several synthesis enzymes via the ubiquitin-proteasome system. Of note, we previously identified four cholesterol synthesis enzymes as substrates for one E3 ubiquitin ligase, membrane-associated RING-CH-type finger 6 (MARCHF6). Whether MARCHF6 targets the cholesterol synthesis pathway at other points is unknown. In addition, the posttranslational regulation of many cholesterol synthesis enzymes, including the C4-demethylation complex (sterol-C4-methyl oxidase-like, SC4MOL; NAD(P)-dependent steroid dehydrogenase-like, NSDHL; hydroxysteroid 17-beta dehydrogenase, HSD17B7), is largely uncharacterized. Using cultured mammalian cell lines (human-derived and Chinese hamster ovary cells), we show SC4MOL, the first acting enzyme of C4-demethylation, is a MARCHF6 substrate and is rapidly turned over and sensitive to sterols. Sterol depletion stabilizes SC4MOL protein levels, while sterol excess downregulates both transcript and protein levels. Furthermore, we found SC4MOL depletion by siRNA results in a significant decrease in total cell cholesterol. Thus, our work indicates SC4MOL is the most regulated enzyme in the C4-demethylation complex. Our results further implicate MARCHF6 as a crucial posttranslational regulator of cholesterol synthesis, with this E3 ubiquitin ligase controlling levels of at least five enzymes of the pathway.


Subject(s)
Phytosterols , Sterols , Cricetinae , Animals , Humans , Sterols/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , CHO Cells , Cricetulus , Cholesterol/metabolism , Oxidoreductases , 3-Hydroxysteroid Dehydrogenases
2.
Elife ; 122023 01 19.
Article in English | MEDLINE | ID: mdl-36655986

ABSTRACT

Cholesterol synthesis is both energy- and oxygen-intensive, yet relatively little is known of the regulatory effects of hypoxia on pathway enzymes. We previously showed that the rate-limiting and first oxygen-dependent enzyme of the committed cholesterol synthesis pathway, squalene monooxygenase (SM), can undergo partial proteasomal degradation that renders it constitutively active. Here, we show hypoxia is a physiological trigger for this truncation, which occurs through a two-part mechanism: (1) increased targeting of SM to the proteasome via stabilization of the E3 ubiquitin ligase MARCHF6 and (2) accumulation of the SM substrate, squalene, which impedes the complete degradation of SM and liberates its truncated form. This preserves SM activity and downstream pathway flux during hypoxia. These results uncover a feedforward mechanism that allows SM to accommodate fluctuating substrate levels and may contribute to its widely reported oncogenic properties.


Cells need cholesterol to work properly but too much cholesterol is harmful and can contribute to atherosclerosis (narrowing of blood vessels), cancer and other diseases. Cells therefore carefully control the activity of the enzymes that are involved in making cholesterol, including an enzyme known as squalene monooxygenase. When the level of cholesterol in a cell rises, a protein called MARCHF6 adds molecules of ubiquitin to squalene monooxygenase. These molecules act as tags that direct the enzyme to be destroyed by a machine inside cells, known as the proteasome, thereby preventing further (unnecessary) production of cholesterol. Previous studies found that squalene monooxygenase is sometimes only partially broken down to make a shorter (truncated) form of the enzyme that is permanently active, even when the level of cholesterol in the cell is high. However, it was unclear what triggers this partial breakdown. The process of making cholesterol uses a lot of oxygen, yet many cancer cells thrive in tumours with low levels of oxygen. Here, Coates et al. used biochemical and cell biology approaches to study the effect of low oxygen levels on the activity of squalene monooxygenase in human cells. The experiments revealed that low oxygen levels trigger squalene monooxygenase to be partially degraded to make the truncated form of the enzyme. Firstly, MARCHF6 accumulates and adds ubiquitin to the enzyme to accelerate its delivery to the proteasome. Secondly, as the proteasome starts to degrade the enzyme, a build-up of squalene molecules impedes further breakdown of the enzyme. This mechanism preserves squalene monooxygenase activity when oxygen levels drop in cells, which may compensate for temporary oxygen shortfalls and allow cells to continue to make cholesterol. Squalene monooxygenase is overactive in individuals with a wide variety of diseases including fatty liver and prostate cancer. Drugs that block squalene monooxygenase activity have been shown to stop cancer cells from growing, but unfortunately these drugs are also toxic to mammals. These findings suggest that reducing the activity of squalene monooxygenase in more subtle ways, such as stopping it from being partially degraded, may be a more viable treatment strategy for cancer and other diseases associated with high levels of cholesterol.


Subject(s)
Cholesterol , Squalene Monooxygenase , Humans , Squalene Monooxygenase/genetics , Squalene Monooxygenase/chemistry , Squalene Monooxygenase/metabolism , Cholesterol/metabolism , Squalene , Hypoxia , Oxygen
3.
J Lipid Res ; 63(12): 100295, 2022 12.
Article in English | MEDLINE | ID: mdl-36216146

ABSTRACT

The enzymatic pathway of cholesterol biosynthesis has been well characterized. However, there remain several potential interacting proteins that may play ancillary roles in the regulation of cholesterol production. Here, we identified ERG28 (chromosome 14 open reading frame 1 [C14orf1]), a homologue of the yeast protein Erg28p, as a player in mammalian cholesterol synthesis. ERG28 is conserved from yeast to humans but has been largely overlooked in mammals. Using quantitative RT-PCR, luciferase assays, and publicly available chromatin immunoprecipitation sequencing data, we found that transcription of this gene is driven by the transcription factor SREBP-2, akin to most cholesterol synthesis enzymes, as well as identifying sterol-responsive elements and cofactor binding sites in its proximal promoter. Based on a split luciferase system, ERG28 interacted with itself and two enzymes of cholesterol synthesis (NSDHL and SC4MOL). Huh7 ERG28-KO cell lines were generated, revealing reduced total cholesterol levels in sterol-depleted environments. In addition, radiolabeled metabolic flux assays showed a 60-75% reduction in the rate of cholesterol synthesis in the KO versus wild-type cells, which could be rescued by expression of ectopic ERG28. Unexpectedly, KO of ERG28 also impaired the activation of SREBP-2 under sterol-replete conditions, by a yet-to-be defined mechanism. These results indicate that ERG28 is clearly involved in cholesterol synthesis, although the precise role this noncatalytic protein plays in this complex metabolic pathway remains to be fully elucidated. A deeper understanding of ERG28, and other ancillary proteins of cholesterol synthesis, may help inform therapeutic strategies for diseases associated with aberrant cholesterol metabolism.


Subject(s)
Saccharomyces cerevisiae Proteins , Sterols , Animals , Humans , Sterol Regulatory Element Binding Protein 1 , Cholesterol , Saccharomyces cerevisiae/metabolism , Fungal Proteins , Sterol Regulatory Element Binding Protein 2/genetics , CCAAT-Enhancer-Binding Proteins , Mammals/metabolism , 3-Hydroxysteroid Dehydrogenases , Membrane Proteins/metabolism
4.
J Biol Chem ; 296: 100731, 2021.
Article in English | MEDLINE | ID: mdl-33933449

ABSTRACT

Squalene monooxygenase (SM, also known as squalene epoxidase) is a rate-limiting enzyme of cholesterol synthesis that converts squalene to monooxidosqualene and is oncogenic in numerous cancer types. SM is subject to feedback regulation via cholesterol-induced proteasomal degradation, which depends on its lipid-sensing N-terminal regulatory domain. We previously identified an endogenous truncated form of SM with a similar abundance to full-length SM, but whether this truncated form is functional or subject to the same regulatory mechanisms as full-length SM is not known. Here, we show that truncated SM differs from full-length SM in two major ways: it is cholesterol resistant and adopts a peripheral rather than integral association with the endoplasmic reticulum membrane. However, truncated SM retains full SM activity and is therefore constitutively active. Truncation of SM occurs during its endoplasmic reticulum-associated degradation and requires the proteasome, which partially degrades the SM N-terminus and disrupts cholesterol-sensing elements within the regulatory domain. Furthermore, truncation relies on a ubiquitin signal that is distinct from that required for cholesterol-induced degradation. Using mutagenesis, we demonstrate that partial proteasomal degradation of SM depends on both an intrinsically disordered region near the truncation site and the stability of the adjacent catalytic domain, which escapes degradation. These findings uncover an additional layer of complexity in the post-translational regulation of cholesterol synthesis and establish SM as the first eukaryotic enzyme found to undergo proteasomal truncation.


Subject(s)
Cholesterol/metabolism , Squalene Monooxygenase/metabolism , Animals , Cell Line, Tumor , Endoplasmic Reticulum-Associated Degradation , Enzyme Stability , HEK293 Cells , Humans , Mutagenesis , Proteasome Endopeptidase Complex/metabolism , Squalene Monooxygenase/chemistry , Squalene Monooxygenase/genetics , Ubiquitination
5.
Curr Biol ; 30(15): R886-R888, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32750350

ABSTRACT

Although cholesterol is considered a vital lipid for animals, not all animals can make cholesterol. A new study employing that celebrated elegant worm, Caenorhabditis elegans, investigates mechanisms that evolved in a sterol auxotroph to enable survival without sterol synthesis.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cholesterol , Sterols , Taste
6.
Biochem J ; 477(2): 541-555, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31904814

ABSTRACT

Cholesterol synthesis is a tightly controlled pathway, with over 20 enzymes involved. Each of these enzymes can be distinctly regulated, helping to fine-tune the production of cholesterol and its functional intermediates. Several enzymes are degraded in response to increased sterol levels, whilst others remain stable. We hypothesised that an enzyme at a key branch point in the pathway, lanosterol 14α-demethylase (LDM) may be post-translationally regulated. Here, we show that the preceding enzyme, lanosterol synthase is stable, whilst LDM is rapidly degraded. Surprisingly, this degradation is not triggered by sterols. However, the E3 ubiquitin ligase membrane-associated ring-CH-type finger 6 (MARCH6), known to control earlier rate-limiting steps in cholesterol synthesis, also control levels of LDM and the terminal cholesterol synthesis enzyme, 24-dehydrocholesterol reductase. Our work highlights MARCH6 as the first example of an E3 ubiquitin ligase that targets multiple steps in a biochemical pathway and indicates new facets in the control of cholesterol synthesis.


Subject(s)
Cholesterol/biosynthesis , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Sterol 14-Demethylase/genetics , Ubiquitin-Protein Ligases/genetics , Animals , CHO Cells , Cholesterol/genetics , Cricetulus , HeLa Cells , Humans , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Lipogenesis/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Protein Processing, Post-Translational/genetics , Proteolysis , Sterol 14-Demethylase/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
7.
J Biol Chem ; 295(9): 2850-2865, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31911440

ABSTRACT

Cholesterol synthesis is a tightly regulated process, both transcriptionally and post-translationally. Transcriptional control of cholesterol synthesis is relatively well-understood. However, of the ∼20 enzymes in cholesterol biosynthesis, post-translational regulation has only been examined for a small number. Three of the four sterol reductases in cholesterol production, 7-dehydrocholesterol reductase (DHCR7), 14-dehydrocholesterol reductase (DHCR14), and lamin-B receptor (LBR), share evolutionary ties with a high level of sequence homology and predicted structural homology. DHCR14 and LBR uniquely share the same Δ-14 reductase activity in cholesterol biosynthesis, yet little is known about their post-translational regulation. We have previously identified specific modes of post-translational control of DHCR7, but it is unknown whether these regulatory mechanisms are shared by DHCR14 and LBR. Using CHO-7 cells stably expressing epitope-tagged DHCR14 or LBR, we investigated the post-translational regulation of these enzymes. We found that DHCR14 and LBR undergo differential post-translational regulation, with DHCR14 being rapidly turned over, triggered by cholesterol and other sterol intermediates, whereas LBR remained stable. DHCR14 is degraded via the ubiquitin-proteasome system, and we identified several DHCR14 and DHCR7 putative interaction partners, including a number of E3 ligases that modulate DHCR14 levels. Interestingly, we found that gene expression across an array of human tissues showed a negative relationship between the C14-sterol reductases; one enzyme or the other tends to be predominantly expressed in each tissue. Overall, our findings indicate that whereas LBR tends to be the constitutively active C14-sterol reductase, DHCR14 levels are tunable, responding to the local cellular demands for cholesterol.


Subject(s)
Cholesterol/biosynthesis , Gene Expression Regulation , Oxidoreductases/genetics , Protein Processing, Post-Translational , Receptors, Cytoplasmic and Nuclear/genetics , Animals , CHO Cells , Cricetulus , Humans , Organ Specificity , Oxidoreductases/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Protein Stability , Ubiquitin-Protein Ligases/metabolism , Lamin B Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...