Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7461, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985656

ABSTRACT

Neuroinflammation in the brain contributes to the pathogenesis of Parkinson's disease (PD), but the potential dysregulation of peripheral immunity has not been systematically investigated for idiopathic PD (iPD). Here we showed an elevated peripheral cytotoxic immune milieu, with more terminally-differentiated effector memory (TEMRA) CD8 T, CD8+ NKT cells and circulating cytotoxic molecules in fresh blood of patients with early-to-mid iPD, especially females, after analyzing > 700 innate and adaptive immune features. This profile, also reflected by fewer CD8+FOXP3+ T cells, was confirmed in another subcohort. Co-expression between cytotoxic molecules was selectively enhanced in CD8 TEMRA and effector memory (TEM) cells. Single-cell RNA-sequencing analysis demonstrated the accelerated differentiation within CD8 compartments, enhanced cytotoxic pathways in CD8 TEMRA and TEM cells, while CD8 central memory (TCM) and naïve cells were already more-active and transcriptionally-reprogrammed. Our work provides a comprehensive map of dysregulated peripheral immunity in iPD, proposing candidates for early diagnosis and treatments.


Subject(s)
Parkinson Disease , Humans , Female , Parkinson Disease/genetics , CD8-Positive T-Lymphocytes , Cell Differentiation , Immunologic Memory
2.
Nat Metab ; 4(5): 589-607, 2022 05.
Article in English | MEDLINE | ID: mdl-35618940

ABSTRACT

Pyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4+ regulatory T cells (Treg cells). DJ-1 binds to PDHE1-ß (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS). Park7 (Dj-1) deletion impairs Treg survival starting in young mice and reduces Treg homeostatic proliferation and cellularity only in aged mice. This leads to increased severity in aged mice during the remission of experimental autoimmune encephalomyelitis (EAE). Dj-1 deletion also compromises differentiation of inducible Treg cells especially in aged mice, and the impairment occurs via regulation of PDHB. These findings provide unforeseen insight into the complicated regulatory machinery of the PDH complex. As Treg homeostasis is dysregulated in many complex diseases, the DJ-1-PDHB axis represents a potential target to maintain or re-establish Treg homeostasis.


Subject(s)
Oxidoreductases , Parkinson Disease , Protein Deglycase DJ-1 , Pyruvates , T-Lymphocytes, Regulatory , Aging , Animals , Homeostasis , Mice , Oxidoreductases/metabolism , Parkinson Disease/enzymology , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Deglycase DJ-1/genetics , Pyruvates/metabolism , T-Lymphocytes, Regulatory/metabolism
3.
Cell Rep Med ; 3(4): 100600, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35480624

ABSTRACT

While immunopathology has been widely studied in patients with severe COVID-19, immune responses in non-hospitalized patients have remained largely elusive. We systematically analyze 484 peripheral cellular or soluble immune features in a longitudinal cohort of 63 mild and 15 hospitalized patients versus 14 asymptomatic and 26 household controls. We observe a transient increase of IP10/CXCL10 and interferon-ß levels, coordinated responses of dominant SARS-CoV-2-specific CD4 and fewer CD8 T cells, and various antigen-presenting and antibody-secreting cells in mild patients within 3 days of PCR diagnosis. The frequency of key innate immune cells and their functional marker expression are impaired in hospitalized patients at day 1 of inclusion. T cell and dendritic cell responses at day 1 are highly predictive for SARS-CoV-2-specific antibody responses after 3 weeks in mild but not hospitalized patients. Our systematic analysis reveals a combinatorial picture and trajectory of various arms of the highly coordinated early-stage immune responses in mild COVID-19 patients.


Subject(s)
Antiviral Agents , COVID-19 , Antibodies, Viral , CD8-Positive T-Lymphocytes , Humans , SARS-CoV-2
4.
Immunology ; 165(4): 428-444, 2022 04.
Article in English | MEDLINE | ID: mdl-35143696

ABSTRACT

Stress hormones are believed to skew the CD4 T-cell differentiation towards a Th2 response via a T-cell-extrinsic mechanism. Using isolated primary human naïve and memory CD4 T cells, here we show that both adrenergic- and glucocorticoid-mediated stress signalling pathways play a CD4 naïve T-cell-intrinsic role in regulating the Th1/Th2 differentiation balance. Both stress hormones reduced the Th1 programme and cytokine production by inhibiting mTORC1 signalling via two parallel mechanisms. Stress hormone signalling inhibited mTORC1 in naïve CD4 T cells (1) by affecting the PI3K/AKT pathway and (2) by regulating the expression of the circadian rhythm gene, period circadian regulator 1 (PER1). Both stress hormones induced the expression of PER1, which inhibited mTORC1 signalling, thus reducing Th1 differentiation. This previously unrecognized cell-autonomous mechanism connects stress hormone signalling with CD4 T-cell differentiation via mTORC1 and a specific circadian clock gene, namely PER1.


Subject(s)
CD4-Positive T-Lymphocytes , Th1 Cells , Cell Differentiation , Hormones , Humans , Mechanistic Target of Rapamycin Complex 1 , Period Circadian Proteins/genetics , Phosphatidylinositol 3-Kinases , Th2 Cells
5.
EMBO Rep ; 23(3): e53302, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35037711

ABSTRACT

Decline in immune function during aging increases susceptibility to different aging-related diseases. However, the underlying molecular mechanisms, especially the genetic factors contributing to imbalance of naïve/memory T-cell subpopulations, still remain largely elusive. Here, we show that loss of DJ-1 encoded by PARK7/DJ-1, causing early-onset familial Parkinson's disease (PD), unexpectedly diminished signs of immunoaging in T-cell compartments of both human and mice. Compared with two gender-matched unaffected siblings of similar ages, the index PD patient with DJ-1 deficiency showed a decline in many critical immunoaging features, including almost doubled non-senescent T cells. The observation was further consolidated by the results in 45-week-old DJ-1 knockout mice. Our data demonstrated that DJ-1 regulates several immunoaging features via hematopoietic-intrinsic and naïve-CD8-intrinsic mechanisms. Mechanistically, DJ-1 depletion reduced oxidative phosphorylation (OXPHOS) and impaired TCR sensitivity in naïve CD8 T cells at a young age, accumulatively leading to a reduced aging process in T-cell compartments in older mice. Our finding suggests an unrecognized critical role of DJ-1 in regulating immunoaging, discovering a potent target to interfere with immunoaging- and aging-associated diseases.


Subject(s)
Oxidative Stress , Parkinson Disease , Aging/genetics , Animals , Humans , Mice , Mice, Knockout , Oxidative Stress/genetics , Parkinson Disease/genetics , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , T-Lymphocytes
6.
Immunohorizons ; 5(8): 711-720, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433626

ABSTRACT

Biobanking is an operational component of various epidemiological studies and clinical trials. Although peripheral blood is routinely acquired and stored in biobanks, the effects of specimen processing on cell composition and clinically relevant functional markers of T cells still require a systematic evaluation. In this study, we assessed 25 relevant T cell markers in human PBMCs and showed that the detection of nine membrane markers (e.g., PD-1, CTLA4, KLRG1, CD25, CD122, CD127, CCR7, and others reflecting exhaustion, senescence, and other functions) was reduced among at least one T cell subset following standard processing, although the frequency of CD4, CD8, and regulatory T cells was unaffected. Nevertheless, a 6-mo-long cryopreservation did not impair the percentages of cells expressing many other membrane and all the eight tested intracellular lineage or functional T cell markers. Our findings uncover that several clinically relevant markers are particularly affected by processing and the interpretation of those results in clinical trials and translational research should be done with caution.


Subject(s)
Biological Specimen Banks , Biomarkers/metabolism , Cryopreservation/methods , Leukocytes, Mononuclear/metabolism , T-Lymphocyte Subsets/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cryopreservation/standards , Flow Cytometry/methods , Humans , Interleukin-7 Receptor alpha Subunit/metabolism , Lectins, C-Type/metabolism , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Reference Standards , T-Lymphocyte Subsets/cytology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Time Factors
7.
iScience ; 24(4): 102289, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33851102

ABSTRACT

Many players regulating the CD4+ T cell-mediated inflammatory response have already been identified. However, the critical nodes that constitute the regulatory and signaling networks underlying CD4 T cell responses are still missing. Using a correlation-network-guided approach, here we identified VIMP (VCP-interacting membrane protein), one of the 25 genes encoding selenoproteins in humans, as a gene regulating the effector functions of human CD4 T cells, especially production of several cytokines including IL2 and CSF2. We identified VIMP as an endogenous inhibitor of cytokine production in CD4 effector T cells via both the E2F5 transcription regulatory pathway and the Ca2+/NFATC2 signaling pathway. Our work not only indicates that VIMP might be a promising therapeutic target for various inflammation-associated diseases but also shows that our network-guided approach can significantly aid in predicting new functions of the genes of interest.

8.
NPJ Syst Biol Appl ; 6(1): 38, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33173039

ABSTRACT

Mitochondrial dysfunction is linked to pathogenesis of Parkinson's disease (PD). However, individual mitochondria-based analyses do not show a uniform feature in PD patients. Since mitochondria interact with each other, we hypothesize that PD-related features might exist in topological patterns of mitochondria interaction networks (MINs). Here we show that MINs formed nonclassical scale-free supernetworks in colonic ganglia both from healthy controls and PD patients; however, altered network topological patterns were observed in PD patients. These patterns were highly correlated with PD clinical scores and a machine-learning approach based on the MIN features alone accurately distinguished between patients and controls with an area-under-curve value of 0.989. The MINs of midbrain dopaminergic neurons (mDANs) derived from several genetic PD patients also displayed specific changes. CRISPR/CAS9-based genome correction of alpha-synuclein point mutations reversed the changes in MINs of mDANs. Our organelle-interaction network analysis opens another critical dimension for a deeper characterization of various complex diseases with mitochondrial dysregulation.


Subject(s)
Mitochondria/pathology , Parkinson Disease/pathology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Female , Humans , Male , Middle Aged , Mitochondria/genetics , Parkinson Disease/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...