Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(50): 58770-58783, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38060242

ABSTRACT

The interplay of soft responsive particles, such as microgels, with nanoparticles (NPs) yields highly versatile complexes that show great potential for applications, ranging from plasmonic sensing to catalysis and drug delivery. However, the microgel-NP assembly process has not been investigated so far at the microscopic level, thus hindering the possibility of designing such hybrid systems a priori. In this work, we combine state-of-the-art numerical simulations with experiments to elucidate the fundamental mechanisms taking place when microgel-NP assembly is controlled by electrostatic interactions and the associated effects on the structure of the resulting complexes. We find a general behavior where, by increasing the number of interacting NPs, the microgel deswells up to a minimum size after which a plateau behavior occurs. This occurs either when NPs are mainly adsorbed to the microgel corona via the folding of the more external chains or when NPs penetrate inside the microgel, thereby inducing a collective reorganization of the polymer network. By varying microgel properties, such as fraction of cross-linkers or charge, as well as NP size and charge, we further show that the microgel deswelling curves can be rescaled onto a single master curve, for both experiments and simulations, demonstrating that the process is entirely controlled by the charge of the whole microgel-NP complex. Our results thus have a direct relevance in fundamental materials science and offer novel tools to tailor the nanofabrication of hybrid devices of technological interest.

2.
Sci Adv ; 9(10): eadg4392, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36897940

ABSTRACT

Among hydrocolloids, gellan is one of the most studied polysaccharides due to its ability to form mechanically stable gels. Despite its long-standing use, the gellan aggregation mechanism is still not understood because of the lack of atomistic information. Here, we fill this gap by developing a new gellan force field. Our simulations offer the first microscopic overview of gellan aggregation, detecting the coil to single-helix transition at dilute conditions and the formation of higher-order aggregates at high concentration through a two-step process: first, the formation of double helices and then their assembly into superstructures. For both steps, we also assess the role of monovalent and divalent cations, complementing simulations with rheology and atomic force microscopy experiments and highlighting the leading role of divalent cations. These results pave the way for future use of gellan-based systems in a variety of applications, from food science to art restoration.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36770338

ABSTRACT

The demand for next-generation multifunctional nanovectors, combining therapeutic effects with specific cellular targeting, has significantly grown during the last few years, pursuing less invasive therapy strategies. Polyphenol-conjugated silver nanoparticles (AgNPs) appear as potential multifunctional nanovectors, integrating the biorecognition capability and the antioxidant power of polyphenols, the antimicrobial activity of silver, and the drug delivery capability of NPs. We present a spectroscopic and microscopic investigation on polyphenol-synthesized AgNPs, selecting caffeic acid (CA) and catechol (CT) as model polyphenols and using them as reducing agents for the AgNP green synthesis, both in the presence and in the absence of a capping agent. We exploit the plasmonic properties of AgNPs to collect Surface-Enhanced Raman Scattering (SERS) spectra from the nanosized region next to the Ag surface and to characterize the molecular environment in the proximity of the NP, assessing the orientation and tunable deprotonation level of CA, depending on the synthesis conditions. Our results suggest that the SERS investigation of such nanovectors can provide crucial information for their perspective biomedical application.

4.
Nanomaterials (Basel) ; 12(9)2022 May 01.
Article in English | MEDLINE | ID: mdl-35564238

ABSTRACT

Multi-responsive nanomaterials based on the self-limited assembly of plasmonic nanoparticles are of great interest due to their widespread employment in sensing applications. We present a thorough investigation of a hybrid nanomaterial based on the protein-mediated aggregation of gold nanoparticles at varying protein concentration, pH and temperature. By combining Small Angle X-ray Scattering with extinction spectroscopy, we are able to frame the morphological features of the formed fractal aggregates in a theoretical model based on patchy interactions. Based on this, we established the main factors that determine the assembly process and their strong correlation with the optical properties of the assemblies. Moreover, the calibration curves that we obtained for each parameter investigated based on the extinction spectra point out to the notable flexibility of this nanomaterial, enabling the selection of different working ranges with high sensitivity. Our study opens for the rational tuning of the morphology and the optical properties of plasmonic assemblies to design colorimetric sensors with improved performances.

5.
Nanoscale ; 13(34): 14469-14479, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34473176

ABSTRACT

The development of various degenerative diseases is suggested to be triggered by the uncontrolled organisation and aggregation of proteins into amyloid fibrils. For this reason, there are ongoing efforts to develop novel agents and approaches, including metal nanoparticle-based colloids, that dissolve amyloid structures and prevent pathogenic protein aggregation. In this contribution, the role of gold nanoparticles (AuNPs) in degrading amyloid fibrils of the model protein lysozyme is investigated. The amino acid composition of fibril surfaces before and after the incubation with AuNPs is determined at the single fibril level by exploiting the high spatial resolution and sensitivity provided by tip-enhanced and surface-enhanced Raman spectroscopies. This combined spectroscopic approach allows to reveal the molecular mechanisms driving the interaction between fibrils and AuNPs. Our results provide an important input for the understanding of amyloid fibrils and could have a potential translational impact on the development of strategies for the prevention and treatment of amyloid-related diseases.


Subject(s)
Gold , Metal Nanoparticles , Amyloid , Muramidase , Spectrum Analysis, Raman
6.
Int J Biol Macromol ; 170: 88-93, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33358955

ABSTRACT

In the last decades, DNA has been considered far more than the system carrying the essential genetic instructions. Indeed, because of the remarkable properties of the base-pairing specificity and thermoreversibility of the interactions, DNA plays a central role in the design of innovative architectures at the nanoscale. Here, combining complementary DNA strands with a custom-made solution of silver nanoparticles, we realize plasmonic aggregates to exploit the sensitivity of Surface Enhanced Raman Spectroscopy (SERS) for the identification/detection of the distinctive features of DNA hybridization, both in solution and on dried samples. Moreover, SERS allows monitoring the DNA aggregation process by following the temperature variation of a specific spectroscopic marker associated with the Watson-Crick hydrogen bond formation. This temperature-dependent behavior enables us to precisely reconstruct the melting profile of the selected DNA sequences by spectroscopic measurements only.


Subject(s)
DNA, Single-Stranded/chemistry , Nucleic Acid Hybridization , Spectrum Analysis, Raman/methods , Base Pairing , Desiccation , Hydrogen Bonding , Hydroxylamine , Metal Nanoparticles/chemistry , Nucleic Acid Denaturation , Silver/chemistry , Solutions , Temperature
7.
J Colloid Interface Sci ; 580: 419-428, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32698085

ABSTRACT

We realise an antibacterial nanomaterial based on the self-limited assembly of patchy plasmonic colloids, obtained by adsorption of lysozyme to gold nanoparticles. The possibility of selecting the size of the assemblies within several hundred nanometres allows for tuning their optical response in a wide range of frequencies from visible to near infrared. We also demonstrate an aggregation-dependent modulation of the catalytic activity, which results in an enhancement of the antibacterial performances for assemblies of the proper size. The gained overall control on structure, optical properties and biological activity of such nanomaterial paves the way for the development of novel antibacterial nanozymes with promising applications in treating multi drug resistant bacteria.


Subject(s)
Metal Nanoparticles , Nanostructures , Anti-Bacterial Agents/pharmacology , Colloids , Gold
8.
Nanoscale ; 11(32): 15224-15233, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31385577

ABSTRACT

One of the frontiers of nanomedicine is the rational design of theranostic nanovectors. These are nanosized materials combining diagnostic and therapeutic capabilities, i.e. capable of tracking cancer cells and tissues in complex environments, and of selectively acting against them. We herein report on the preparation and application of antifolate plasmonic nanovectors, made of functionalized gold nanoparticles conjugated with the folic acid competitors aminopterin and methotrexate. Due to the overexpression of folate binding proteins on many types of cancer cells, these nanosystems can be exploited for selective cancer cell targeting. The strong surface enhanced Raman scattering (SERS) signature of these nanovectors acts as a diagnostic tool, not only for tracing their presence in biological samples, but also, through a careful spectral analysis, to precisely quantify the amount of drug loaded on a single nanoparticle, and therefore delivered to the cells. Meanwhile, the therapeutic action is implemented based on the strong toxicity of antifolate drugs. Remarkably, supplying the drug in the nanostructured form, rather than as a free molecule, enhances its specific toxicity. The selectivity of the antifolate nanovectors can be optimized by the design of a hybrid folate/antifolate coloaded nanovector for the specific targeting of folate receptor α, which is overexpressed on numerous cancer cell types.


Subject(s)
Folic Acid Antagonists/chemistry , Nanostructures/chemistry , Spectrum Analysis, Raman , Theranostic Nanomedicine , Aminopterin/chemistry , Aminopterin/pharmacology , Cell Line , Cell Survival/drug effects , Folic Acid/chemistry , Folic Acid/pharmacology , Folic Acid Antagonists/pharmacology , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Methotrexate/chemistry , Methotrexate/pharmacology
9.
Front Chem ; 7: 413, 2019.
Article in English | MEDLINE | ID: mdl-31231638

ABSTRACT

The merging of the molecular specificity of Raman spectroscopy with the extraordinary optical properties of metallic nanoarchitectures is at the heart of Surface Enhanced Raman Spectroscopy (SERS), which in the last few decades proved its worth as powerful analytical tool with detection limits pushed to the single molecule recognition. Within this frame, SERS-based nanosensors for localized pH measurements have been developed and employed for a wide range of applications. Nevertheless, to improve the performances of such nanosensors, many key issues concerning their assembling, calibration and stability, that could significantly impact on the outcome of the pH measurements, need to be clarified. Here, we report on the detailed characterization of a case study SERS-active pH nanosensor, based on the conjugation of gold nanoparticles with the pH-sensitive molecular probe 4-mercaptobenzoic acid (4MBA). We analyzed and optimized all the aspects of the synthesis procedure and of the operating conditions to preserve the sensor stability and provide the highest responsiveness to pH. Exploiting the dependence of the SERS spectrum on the protonation degree of the carboxylic group at the edge of the 4MBA molecules, we derived a calibration curve for the nanosensor. The extrapolated working point, i.e., the pH value corresponding to the highest sensitivity, falls at pH 5.6, which corresponds to the pKa value of the molecule confined at the nanoparticle surface. A shift of the pKa of 4MBA, observed on the molecules confined at the nanostructured interface respect to the bulk counterpart, unveils the opportunity to assembly a SERS-based pH nanosensor with the ability to select its working point in the sensitivity region of interest, by acting on the nanostructured surface on which the molecular probe is confined. As a proof-of-concept, the nanosensor was successfully employed to measure the extracellular pH of normal and cancer cells, demonstrating the capability to discriminate between them.

10.
J Colloid Interface Sci ; 541: 399-406, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30710822

ABSTRACT

With the aim of developing new drug carriers for inhalation therapy, we report here an in depth investigation of the structure of multilamellar liposomes loaded with two well-established anti-tubercular (anti-TB) drugs, isoniazid (INH) and rifampicin (RIF), by means of small-angle neutron-scattering (SANS) analysis. Unloaded, single drug-loaded and co-loaded liposomes were prepared using different amounts of drugs and characterized regarding size, encapsulation efficiency and drug release. Detailed information on relevant properties of the investigated host-guest structures, namely the steric bilayer thickness, particle dispersion, number of lamellae and drug localization was studied by SANS. Results showed that RIF-liposomes were less ordered than unloaded liposomes. INH induced a change in the inter-bilayer periodical spacing, while RIF-INH co-loading stabilized the multilamellar liposome architecture, as confirmed by the increment of the drug loading capacity. These findings could be useful for the understanding of in vitro and in vivo behavior of these systems and for the design of new drug carriers, intended for inhaled therapy.


Subject(s)
Antitubercular Agents/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Isoniazid/chemistry , Liposomes/chemistry , Rifampin/chemistry , Scattering, Small Angle
SELECTION OF CITATIONS
SEARCH DETAIL
...