Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 8364, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29849171

ABSTRACT

We describe a new rapid and accurate immunoassay-based technology capable of counting single target molecules using digital imaging without magnification. Using the technology, we developed a rapid test for Clostridium difficile toxin B, which is responsible for the pathology underlying potentially fatal C. difficile infections (CDI). There are currently no tests for CDI that are rapid, sensitive, and specific. The MultiPath C. difficile toxin B test images and counts complexes of target-specific magnetic and fluorescent particles that have been tethered together by toxin B molecules in minimally processed stool samples. The performance characteristics of the 30 minute test include a limit of detection of 45 pg/mL, dynamic range covering 4-5 orders of magnitude, and coefficient of variation of less than 10%. The MultiPath test detected all toxinotypes and ribotypes tested, including the one most commonly occurring in the US and EU; shows no cross reactivity with relevant bacterial species; and is robust to potential interferants commonly present in stool samples. On a training set of 320 clinical stool samples, the MultiPath C. difficile toxin B test showed 97.0% sensitivity (95% CI, 91.4-99.4%); 98.3% specificity (95% CI, 96.8-99.2%); and 98.2% accuracy (95% CI, 96.7-99.0%) compared to the cellular cytotoxicity neutralization assay (CCNA) reference method. Based on these compelling performance characteristics, we believe the MultiPath technology can address the lack of rapid, sensitive, specific, and easy-to-use diagnostic tests for C. difficile.


Subject(s)
Bacterial Proteins/analysis , Bacterial Toxins/analysis , Feces/chemistry , Immunoassay/methods , Artifacts , Clostridioides difficile/physiology , Feces/microbiology , Humans , Limit of Detection , Time Factors
3.
Immunity ; 35(4): 536-49, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22018470

ABSTRACT

Although infections with virulent pathogens often induce a strong inflammatory reaction, what drives the increased immune response to pathogens compared to nonpathogenic microbes is poorly understood. One possibility is that the immune system senses the level of threat from a microorganism and augments the response accordingly. Here, focusing on cytotoxic necrotizing factor 1 (CNF1), an Escherichia coli-derived effector molecule, we showed the host indirectly sensed the pathogen by monitoring for the effector that modified RhoGTPases. CNF1 modified Rac2, which then interacted with the innate immune adaptors IMD and Rip1-Rip2 in flies and mammalian cells, respectively, to drive an immune response. This response was protective and increased the ability of the host to restrict pathogen growth, thus defining a mechanism of effector-triggered immunity that contributes to how metazoans defend against microbes with pathogenic potential.


Subject(s)
Signal Transduction , rac GTP-Binding Proteins/immunology , Adaptor Proteins, Signal Transducing/metabolism , Enzyme Activation , HEK293 Cells , Humans , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , rac GTP-Binding Proteins/metabolism , RAC2 GTP-Binding Protein
4.
J Immunol ; 184(12): 7071-81, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20483752

ABSTRACT

Innate immunity is vital for protection from microbes and is mediated by humoral effectors, such as cytokines, and cellular immune defenses, including phagocytic cells (e.g., macrophages). After internalization by phagocytes, microbes are delivered into a phagosome, a complex intracellular organelle with a well-established and important role in microbial killing. However, the role of this organelle in cytokine responses and microbial sensing is less well defined. In this study, we assess the role of the phagosome in innate immune sensing and demonstrate the critical interdependence of phagocytosis and pattern recognition receptor signaling during response to the Gram-positive bacteria Staphylococcus aureus. We show that phagocytosis is essential to initiate an optimal MyD88-dependent response to Staphylococcus aureus. Prior to TLR-dependent cytokine production, bacteria must be engulfed and delivered into acidic phagosomes where acid-activated host enzymes digest the internalized bacteria to liberate otherwise cryptic bacterial-derived ligands that initiate responses from the vacuole. Importantly, in macrophages in which phagosome acidification is perturbed, the impaired response to S. aureus can be rescued by the addition of lysostaphin, a bacterial endopeptidase active at neutral pH that can substitute for the acid-activated host enzymes. Together, these observations delineate the interdependence of phagocytosis with pattern recognition receptor signaling and suggest that therapeutics to augment functions and signaling from the vacuole may be useful strategies to increase host responses to S. aureus.


Subject(s)
Macrophages/immunology , Myeloid Differentiation Factor 88/immunology , Phagocytosis/immunology , Phagosomes/immunology , Staphylococcal Infections/immunology , Animals , Cytokines/biosynthesis , Enzyme-Linked Immunosorbent Assay , Hydrogen-Ion Concentration , Macrophage Activation/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , Phagosomes/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Staphylococcal Infections/metabolism , Staphylococcus aureus/immunology
5.
J Biol Chem ; 285(26): 20147-54, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20406817

ABSTRACT

NOD2 (nucleotide-binding oligomerization domain containing 2) is an important cytosolic pattern recognition receptor that activates NF-kappaB and other immune effector pathways such as autophagy and antigen presentation. Despite its intracellular localization, NOD2 participates in sensing of extracellular microbes such as Staphylococcus aureus. NOD2 ligands similar to the minimal synthetic ligand muramyl dipeptide (MDP) are generated by internalization and processing of bacteria in hydrolytic phagolysosomes. However, how these derived ligands exit this organelle and access the cytosol to activate NOD2 is poorly understood. Here, we address how phagosome-derived NOD2 ligands access the cytosol in human phagocytes. Drawing on data from Drosophila phagosomes, we identify an evolutionarily conserved role of SLC15A transporters, Drosophila Yin and PEPT2, as MDP transporters in fly and human phagocytes, respectively. We show that PEPT2 is highly expressed by human myeloid cells. Ectopic expression of both Yin and PEPT2 increases the sensitivity of NOD2-dependent NF-kappaB activation. Additionally, we show that PEPT2 associates with phagosome membranes. Together, these data identify Drosophila Yin and PEPT2 as evolutionarily conserved phagosome-associated transporters that are likely to be of particular importance in delivery of bacteria-derived ligands generated in phagosomes to cytosolic sensors recruited to the vicinity of these organelles.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Drosophila Proteins/metabolism , Membrane Transport Proteins/metabolism , Phagosomes/metabolism , Symporters/metabolism , Animals , Cell Line , Drosophila Proteins/genetics , Evolution, Molecular , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Host-Pathogen Interactions , Humans , Interleukin-6/metabolism , Macrophages/metabolism , Macrophages/microbiology , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , NF-kappa B/genetics , NF-kappa B/metabolism , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Staphylococcus aureus/physiology , Symporters/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 6/metabolism , Transfection , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL