Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Infect Genet Evol ; 107: 105390, 2023 01.
Article in English | MEDLINE | ID: mdl-36473637

ABSTRACT

Zika virus (ZIKV) may cause febrile illness and neurological damage, such as microcephaly in fetuses. ZIKV is transmitted to humans by Aedes aegypti, a nearly cosmopolitan mosquito. Understanding the virus-vector molecular interactions has been promising to enhance the knowledge towards disease mitigation. Since ZIKV infection alters gene physiology of mosquitoes, we examined the expression profile of ZIKV-infected Ae. aegypti by several approaches to identify genes altered by viral infection. Transcriptomics were performed by comparing between ZIKV-infected and uninfected Ae. aegypti females, which revealed some differentially expressed genes. Most of these genes appear to be involved with immune response as evidenced by an interactome analysis, and a prominent finding was a calreticulin-like (CRT) gene, which was upregulated during the infection. Expression of CRT was also experimentally quantified by qPCR, however, it revealed no significant differences between infected and uninfected females. Instead, expression levels were highly variable among individuals and negatively correlated to viral load. We also tested the possibility of this gene to be silenced, but the double-stranded RNA did not reduce CRT expression, and actually increased the inter-individuals' expressional variability. Present results differed from our original hypothesis of upregulation by infection. They also diverged between them (comparing qPCR to Transcriptomics) and from the literature which reported augmented CRT levels in Aedes species during viral infection. Present case probably underlies a more complex virus-host interaction system than we expected. Regulation of this gene seems not to be a linear correlation between expression and viremy. As infection takes place, a complex homeostatic mechanism may act to prevent expression and other cellular tasks from drifting. It is also possible that CRT expression is simply randomly disturbed by viral infection. Taken together, results show that CRT expression profile during ZIKV infection is complex and requires different investigative approaches to be understood. Studies focused on the biochemical function of CRT protein and on its role in the native mosquito metabolic network could unravel how it is actually influenced by ZIKV. Current work contributes more by getting incidental findings and by posing new hypotheses than by answering the original questions.


Subject(s)
Aedes , Calreticulin , Zika Virus Infection , Animals , Female , Aedes/genetics , Aedes/virology , Calreticulin/genetics , Gene Expression Profiling , Zika Virus Infection/genetics
2.
Infect Genet Evol, v. 107, 105390, jan. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4758

ABSTRACT

Zika virus (ZIKV) may cause febrile illness and neurological damage, such as microcephaly in fetuses. ZIKV is transmitted to humans by Aedes aegypti, a nearly cosmopolitan mosquito. Understanding the virus-vector molecular interactions has been promising to enhance the knowledge towards disease mitigation. Since ZIKV infection alters gene physiology of mosquitoes, we examined the expression profile of ZIKV-infected Ae. aegypti by several approaches to identify genes altered by viral infection. Transcriptomics were performed by comparing between ZIKV-infected and uninfected Ae. aegypti females, which revealed some differentially expressed genes. Most of these genes appear to be involved with immune response as evidenced by an interactome analysis, and a prominent finding was a calreticulin-like (CRT) gene, which was upregulated during the infection. Expression of CRT was also experimentally quantified by qPCR, however, it revealed no significant differences between infected and uninfected females. Instead, expression levels were highly variable among individuals and negatively correlated to viral load. We also tested the possibility of this gene to be silenced, but the double-stranded RNA did not reduce CRT expression, and actually increased the inter-individuals' expressional variability. Present results differed from our original hypothesis of upregulation by infection. They also diverged between them (comparing qPCR to Transcriptomics) and from the literature which reported augmented CRT levels in Aedes species during viral infection. Present case probably underlies a more complex virus-host interaction system than we expected. Regulation of this gene seems not to be a linear correlation between expression and viremy. As infection takes place, a complex homeostatic mechanism may act to prevent expression and other cellular tasks from drifting. It is also possible that CRT expression is simply randomly disturbed by viral infection. Taken together, results show that CRT expression profile during ZIKV infection is complex and requires different investigative approaches to be understood. Studies focused on the biochemical function of CRT protein and on its role in the native mosquito metabolic network could unravel how it is actually influenced by ZIKV. Current work contributes more by getting incidental findings and by posing new hypotheses than by answering the original questions.

3.
Front Microbiol ; 13: 1040093, 2022.
Article in English | MEDLINE | ID: mdl-36386719

ABSTRACT

Hemorrhagic fever viruses (HFVs) pose a threat to global public health owing to the emergence and re-emergence of highly fatal diseases. Viral hemorrhagic fevers (VHFs) caused by these viruses are mostly characterized by an acute febrile syndrome with coagulation abnormalities and generalized hemorrhage that may lead to life-threatening organ dysfunction. Currently, the events underlying the viral pathogenicity associated with multiple organ dysfunction syndrome still underexplored. In this minireview, we address the current knowledge of the mechanisms underlying VHFs pathogenesis and discuss the available development of preventive and therapeutic options to treat these infections. Furthermore, we discuss the potential of HFVs to cause worldwide emergencies along with factors that favor their spread beyond their original niches.

4.
Microbiol Resour Announc ; 9(31)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32732240

ABSTRACT

Insect-specific viruses do not replicate in vertebrates. Here, we report the genome sequence of a novel strain of a Phasi Charoen-like virus (PCLV) that was isolated from a wild Aedes aegypti mosquito collected in Aracajú, Sergipe State, Brazil. The coding-complete genome of the PCLV is described in this report.

5.
Parasit Vectors ; 11(Suppl 2): 654, 2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30583720

ABSTRACT

Major efforts are currently underway to develop novel, complementary methods to combat mosquito-borne diseases. Mosquito genetic control strategies (GCSs) have become an increasingly important area of research on account of their species-specificity, track record in targeting agricultural insect pests, and their environmentally non-polluting nature. A number of programs targeting Aedes and Anopheles mosquitoes, vectors of human arboviruses and malaria respectively, are currently being developed or deployed in many parts of the world. Operationally implementing these technologies on a large scale however, beyond proof-of-concept pilot programs, is hampered by the absence of adequate sex separation methods. Sex separation eliminates females in the laboratory from male mosquitoes prior to release. Despite the need for sex separation for the control of mosquitoes, there have been limited efforts in recent years in developing systems that are fit-for-purpose. In this special issue of Parasites and Vectors we report on the progress of the global Coordinated Research Program on "Exploring genetic, molecular, mechanical and behavioural methods for sex separation in mosquitoes" that is led by the Insect Pest Control Subprogramme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture with the specific aim of building efficient sex separation systems for mosquito species. In an effort to overcome current barriers we briefly highlight what we believe are the three main reasons why progress has been so slow in developing appropriate sex separation systems: the availability of methods that are not scalable, the difficulty of building the ideal genetic systems and, finally, the lack of research efforts in this area.


Subject(s)
Aedes/genetics , Anopheles/genetics , Malaria/prevention & control , Mosquito Control , Mosquito Vectors/genetics , Aedes/physiology , Animals , Anopheles/physiology , Female , Gene Drive Technology , Humans , Infertility , Malaria/transmission , Male , Mosquito Vectors/physiology , Sex Determination Analysis
6.
Parasit Vectors ; 11(Suppl 2): 644, 2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30583731

ABSTRACT

The global economic cost of Aedes-borne diseases, such as dengue, is estimated to be in the billions of dollars annually. In this scenario, a sustained vector control strategy is the only alternative to control dengue, as well as other diseases transmitted by Aedes, including Zika and chikungunya. The use of transgenic mosquitoes is a promising weapon in the improvement of approaches currently applied in Aedes aegypti control. Field trials using genetically modified mosquitoes for population control have been conducted and offer an excellent opportunity to evaluate what can be improved. In a mass-rearing mosquito facility, the absence of a transgenic line that produces male-only progeny is undoubtedly a limiting factor; thus, being able to manipulate sex determination in this species is a fundamental step for the success of this strategy. Likewise, the possibility of manipulation of the sex determination pathway opens-up a new opportunity for disease control.


Subject(s)
Aedes/genetics , Communicable Disease Control/methods , Mosquito Control/methods , Mosquito Vectors/genetics , Sex Determination Processes , Aedes/physiology , Animals , Animals, Genetically Modified , Chikungunya Fever/prevention & control , Chikungunya Fever/transmission , Dengue/prevention & control , Dengue/transmission , Female , Humans , Male , Mosquito Vectors/physiology , Population Control , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission
7.
Insects ; 9(3)2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30111702

ABSTRACT

Aedes aegypti is the principal vector of the urban arboviruses and the blood ingestion is important to produce the eggs in this species. To analyze the egg production in Ae. aegypti, researchers frequently use small cages or Drosophila vials to collect eggs from gravid females. Although it is affordable, the setup is time- and space-consuming, mainly when many mosquitoes need to be individually analyzed. This study presents an easy, cheap, and space-saving method to perform individual oviposition assays in Ae. aegypti using cell culture plates. This new method to access fecundity rate was named "oviplate". The oviplates are setup with 12- or 24-well plates, distilled water and filter paper and they are 78 to 88% cheaper than the traditional Drosophila vial assay, respectively. Furthermore, to allocate 72 vitellogenic females in an insectary using Drosophila vial is necessary 4100 cm³ against 1400 cm³ and 700 cm³ when using 12- and 24-well plates, respectively. No statistical differences were found between the number of eggs laid in Drosophila vials and the oviplates, validating the method. The oviplate method is an affordable, and time- and space-efficient device, and it is simpler to perform individual fecundity analyses in Ae. aegypti.

8.
Sci Rep ; 7(1): 14326, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29085013

ABSTRACT

Angiotensin II (Ang II) is a natural mammalian hormone that has been described to exhibit antiplasmodial activity therefore constituting a promising alternative for the treatment of malaria. Despite its promise, the development of Ang II as an antimalarial is limited by its potent induction of vasoconstriction and its rapid degradation within minutes. Here, we used peptide design to perform targeted chemical modifications to Ang II to generate conformationally restricted (disulfide-crosslinked) peptide derivatives with suppressed vasoconstrictor activity and increased stability. Designed constrained peptides were synthesized chemically and then tested for antiplasmodial activity. Two lead constrained peptides were identified (i.e., peptides 1 and 2), each composed of 10 amino acid residues. These peptides exhibited very promising activity in both our Plasmodium gallinaceum (>80%) and Plasmodium falciparum (>40%) models, an activity that was equivalent to that of Ang II, and led to complete suppression of vasoconstriction. In addition, peptide 5 exhibited selective activity towards the pre-erythrocytic stage (98% of activity against P. gallinaceum), thus suggesting that it may be possible to design peptides that target specific stages of the malaria life cycle. The Ang II derived stable scaffolds presented here may provide the basis for development of a new generation of peptide-based drugs for the treatment of malaria.


Subject(s)
Angiotensin II/metabolism , Antimalarials/metabolism , Erythrocytes/physiology , Malaria, Falciparum/metabolism , Peptides/metabolism , Plasmodium falciparum/physiology , Plasmodium gallinaceum/physiology , Vasodilator Agents/metabolism , Angiotensin II/therapeutic use , Animals , Antimalarials/therapeutic use , Chemical Engineering , Drug Design , Erythrocytes/drug effects , Humans , Life Cycle Stages , Malaria, Falciparum/drug therapy , Peptides/chemical synthesis , Peptides/therapeutic use , Vasoconstriction/drug effects , Vasodilator Agents/chemical synthesis , Vasodilator Agents/therapeutic use
9.
PLoS Negl Trop Dis ; 11(6): e0005630, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28614394

ABSTRACT

BACKGROUND: The worldwide expansion of new emergent arboviruses such as Chikungunya and Zika reinforces the importance in understanding the role of mosquito species in spreading these pathogens in affected regions. This knowledge is essential for developing effective programs based on species specificity to avoid the establishment of endemic transmission cycles sustained by the identified local vectors. Although the first autochthonous transmission of Chikungunya virus was described in 2014 in the north of Brazil, the main outbreaks were reported in 2015 and 2016 in the northeast of Brazil. METHODOLOGY/PRINCIPAL FINDINGS: During 5 days of February 2016, we collected mosquitoes in homes of 6 neighborhoods of Aracaju city, the capital of Sergipe state. Four mosquito species were identified but Culex quinquefasciatus and Aedes aegypti were the most abundant. Field-caught mosquitoes were tested for Chikungunya (CHIKV), Zika (ZIKV) and Dengue viruses (DENV) by qRT-PCR and one CHIKV-infected Ae. aegypti female was detected. The complete sequence of CHIKV genome was obtained from this sample and phylogenetic analysis revealed that this isolate belongs to the East-Central-South-African (ECSA) genotype. CONCLUSIONS: Our study describes the first identification of a naturally CHIKV-infected Ae. aegypti in Brazil and the first report of a CHIKV from ECSA genotype identified in this species in the Americas. These findings support the notion of Ae. aegypti being a vector involved in CHIKV outbreaks in northeast of Brazil.


Subject(s)
Aedes/virology , Chikungunya Fever/transmission , Chikungunya virus/isolation & purification , Insect Vectors/virology , Animals , Brazil , Culex/virology , Dengue Virus , Female , Genotype , Male , Phylogeny , Sequence Analysis, RNA , Species Specificity , Zika Virus
11.
PLoS One ; 12(2): e0171951, 2017.
Article in English | MEDLINE | ID: mdl-28187183

ABSTRACT

The Zika virus outbreaks are unprecedented human threat in relation to congenital malformations and neurological/autoimmune complications. Since this virus has high potential to spread in regions presenting the vectors, improvement in mosquito control is a top priority. Thus, Aedes aegypti laboratory strains will be fundamental to support studies in different research fields implicated on Zika-mosquito interactions which are the basis for the development of innovative control methods. In this sense, our aim was to determine the main infection aspects of a Brazilian Zika strain in reference Aedes aegypti laboratory mosquitoes. We orally exposed Rockefeller, Higgs and Rexville mosquitoes to the Brazilian ZIKV (ZIKVBR) and qRT-PCR was applied to determine the infection, dissemination and detection rates of ZIKV in the collected saliva as well as viral levels in mosquito tissues. The three strains sustain the virus development but Higgs showed significantly lower viral loads in bodies at 14 days post-infection (dpi) and the lowest prevalences in bodies and heads. The Rockefeller strain was the most susceptible at 7 dpi but similar dissemination rates were observed at 14 dpi. Although variations exist, the ZIKVBR RNA shows detectable levels in saliva of the three strains at 14 dpi but is only detected in Rockefeller at 7 dpi. Moreover, saliva samples from the three strains were confirmed to be infectious when intrathoracically injected into mosquitoes. The ZIKVBR kinetics was monitored in Rockefeller mosquitoes and virus could be identified in the heads at 4 dpi but was more consistently detected late in infection. Our study presents the first evaluation on how Brazilian Zika virus behaves in reference Aedes aegypti strains and shed light on how the infection evolves over time. Vector competence and hallmarks of the ZIKVBR development were revealed in laboratory mosquitoes, providing additional information to accelerate studies focused on ZIKV-mosquito interactions.


Subject(s)
Aedes/virology , Host Specificity , Mosquito Vectors/virology , Zika Virus/pathogenicity , Aedes/classification , Animals , Humans , Mosquito Vectors/classification , Zika Virus/classification
12.
Plos Neglect. Trop. Dis. ; 11(6): e0005630, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15159

ABSTRACT

Background The worldwide expansion of new emergent arboviruses such as Chikungunya and Zika reinforces the importance in understanding the role of mosquito species in spreading these pathogens in affected regions. This knowledge is essential for developing effective programs based on species specificity to avoid the establishment of endemic transmission cycles sustained by the identified local vectors. Although the first autochthonous transmission of Chikungunya virus was described in 2014 in the north of Brazil, the main outbreaks were reported in 2015 and 2016 in the northeast of Brazil. Methodology/Principal findings During 5 days of February 2016, we collected mosquitoes in homes of 6 neighborhoods of Aracaju city, the capital of Sergipe state. Four mosquito species were identified but Culex quinquefasciatus and Aedes aegypti were the most abundant. Field-caught mosquitoes were tested for Chikungunya (CHIKV), Zika (ZIKV) and Dengue viruses (DENV) by qRT-PCR and one CHIKV-infected Ae. aegypti female was detected. The complete sequence of CHIKV genome was obtained from this sample and phylogenetic analysis revealed that this isolate belongs to the East-Central-South-African (ECSA) genotype. Conclusions Our study describes the first identification of a naturally CHIKV-infected Ae. aegypti in Brazil and the first report of a CHIKV from ECSA genotype identified in this species in the Americas. These findings support the notion of Ae. aegypti being a vector involved in CHIKV outbreaks in northeast of Brazil.

13.
Malar J ; 15: 153, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26964736

ABSTRACT

BACKGROUND: The circumsporozoite protein is the most abundant polypeptide expressed by sporozoites, the malaria parasite stage capable of infecting humans. Sporozoite invasion of mosquito salivary glands prior to transmission is likely mediated by a receptor/ligand-like interaction of the parasites with the target tissues, and the amino (NH2)-terminal portion of CSP is involved in this interaction but not the TSR region on the carboxyl (C)-terminus. Peptides based on the NH2-terminal domain could compete with the parasites for the salivary gland receptors and thus inhibit penetration. METHODS: Peptides based on the NH2-terminus and TSR domains of the CSP from avian or human malaria parasites, Plasmodium gallinaceum and Plasmodium falciparum, respectively, were expressed endogenously in mosquito haemolymph using a transient (Sindbis virus-mediated) or stable (piggyBac-mediated transgenesis) system. RESULTS: Transient endogenous expression of partial NH2-terminus peptide from P. falciparum CSP in P. gallinaceum-infected Aedes aegypti resulted in a reduced number of sporozoites in the salivary glands. When a transgenic approach was used to express a partial CSP NH2-terminal domain from P. gallinaceum the number of sporozoites in the salivary glands did not show a difference when compared to controls. However, a significant difference could be observed when mosquitoes with a lower infection were analysed. The same result could not be observed with mosquitoes endogenously expressing peptides based on the TSR domain from either P. gallinaceum or P. falciparum. CONCLUSION: These results support the conclusion that CSP partial NH2-terminal domain can be endogenously expressed to promote a competition for the receptor used by sporozoites to invade salivary glands, and they could be used to block this interaction and reduce parasite transmission. The same effect cannot be obtained with peptides based on the TSR domain.


Subject(s)
Aedes/parasitology , Cell Adhesion , Plasmodium falciparum/physiology , Plasmodium gallinaceum/physiology , Protozoan Proteins/metabolism , Sporozoites/physiology , Aedes/genetics , Animals , Female , Gene Expression , Protozoan Proteins/genetics , Salivary Glands/parasitology , Transgenes
14.
J Pept Sci ; 22(3): 132-42, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26856687

ABSTRACT

Malaria is an infectious disease responsible for approximately one million deaths annually. Oligopeptides such as angiotensin II (AII) and its analogs are known to have antimalarial effects against Plasmodium gallinaceum and Plasmodium falciparum. However, their mechanism of action is still not fully understood at the molecular level. In the work reported here, we investigated this issue by comparing the antimalarial activity of AII with that of (i) its diastereomer formed by only d-amino acids; (ii) its isomer with reversed sequence; and (iii) its analogs restricted by lactam bridges, the so-called VC5 peptides. Data from fluorescence spectroscopy indicated that the antiplasmodial activities of both all-D-AII and all-D-VC5 were as high as those of the related peptides AII and VC5, respectively. In contrast, retro-AII had no significant effect against P. gallinaceum. Conformational analysis by circular dichroism suggested that AII and its active analogs usually adopted a ß-turn conformation in different solutions. In the presence of membrane-mimetic micelles, AII had also a ß-turn conformation, while retro-AII was random. Molecular dynamics simulations demonstrated that the AII chains were slightly more bent than retro-AII at the surface of a model membrane. At the hydrophobic membrane interior, however, the retro-AII chain was severely coiled and rigid. AII was much more flexible and able to experience both straight and coiled conformations. We took it as an indication of the stronger ability of AII to interact with membrane headgroups and promote pore formation.


Subject(s)
Angiotensin II/pharmacology , Antimalarials/pharmacology , Cell Membrane/drug effects , Peptides/pharmacology , Plasmodium gallinaceum/drug effects , Sporozoites/drug effects , Aedes/parasitology , Amino Acid Sequence , Angiotensin II/analogs & derivatives , Angiotensin II/chemical synthesis , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Chickens , Malaria, Avian/drug therapy , Malaria, Avian/parasitology , Mice , Micelles , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Muscle Contraction/drug effects , Peptides/chemical synthesis , Peptides/chemistry , Plasmodium gallinaceum/growth & development , Plasmodium gallinaceum/metabolism , Salivary Glands/parasitology , Solid-Phase Synthesis Techniques , Stereoisomerism , Structure-Activity Relationship
15.
Malar J ; 14: 433, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26537730

ABSTRACT

BACKGROUND: Antiplasmodial activities of angiotensin II and its analogues have been extensively investigated in Plasmodium gallinaceum and Plasmodium falciparum parasite species. Due to its vasoconstrictor property angiotensin II cannot be used as an anti-malarial drug. METHODS: This work presents the solid-phase syntheses and liquid chromatography and mass spectrometry characterization of ten linear peptides related to angiotensin II against mature P. gallinaceum sporozoites and erythrocyte invasion by P. falciparum. Conformational analyses were performed by circular dichroism. IC50 assays were performed to identify the ideal concentration used on the biological tests and haemolytical erythrocytic assays were made to verify the viability of the biological experiments. The contractile responses of the analogues were made to evaluate if they are promising candidates to be applied as antiplasmodial drugs. RESULTS: The results indicate two short-peptides constituted by hydrophobic residues (5 and 6) with antiplasmodial activity in these models, 89 and 94 % of biological activity against P. gallinaceum sporozoite, respectively, and around 50 % of activity against P. falciparum. Circular dichroism spectra suggested that all the peptides adopted ß-turn conformation in different solutions, except peptide 3. Besides the biological assays IC50, the haemolysis assays and contractile response activities were applied for peptides 5 and 6, which did not present expressive results. CONCLUSIONS: The hydrophobic portion and the arginine, tyrosine, proline, and phenylalanine, when present on peptide primary sequence, tend to increase the antiplasmodial activity. This class of peptides can be explored, as anti-malarial drugs, after in vivo model tests. Graphical abstract: The most active peptide presented 94 % activity on P. gallinaceum sporozoites and 53 % inhibited P. falciparum ring forms invasion.


Subject(s)
Angiotensin II/analogs & derivatives , Angiotensin II/pharmacology , Antimalarials/pharmacology , Biological Products/pharmacology , Peptides/pharmacology , Plasmodium falciparum/drug effects , Plasmodium gallinaceum/drug effects , Aedes/parasitology , Angiotensin II/adverse effects , Animals , Antimalarials/adverse effects , Antimalarials/chemical synthesis , Biological Products/chemical synthesis , Chickens/parasitology , Chromatography, Liquid , Erythrocytes/parasitology , Hemolysis , Inhibitory Concentration 50 , Mass Spectrometry , Mice, Inbred C57BL , Microbial Sensitivity Tests , Muscle Contraction/drug effects , Peptides/chemical synthesis , Stomach/drug effects
16.
Braz. j. infect. dis ; 19(2): 146-155, Mar-Apr/2015. graf
Article in English | LILACS | ID: lil-746519

ABSTRACT

Urban heat islands are characterized by high land surface temperature, low humidity, and poor vegetation, and considered to favor the transmission of the mosquito-borne dengue fever that is transmitted by the Aedes aegypti mosquito. We analyzed the recorded dengue incidence in Sao Paulo city, Brazil, in 2010-2011, in terms of multiple environmental and socioeconomic variables. Geographical information systems, thermal remote sensing images, and census data were used to classify city areas according to land surface temper- ature, vegetation cover, population density, socioeconomic status, and housing standards. Of the 7415 dengue cases, a majority (93.1%) mapped to areas with land surface temperature >28 ◦ C. The dengue incidence rate (cases per 100,000 inhabitants) was low (3.2 cases) in high vegetation cover areas, but high (72.3 cases) in low vegetation cover areas where the land surface temperature was 29 ± 2 ◦ C. Interestingly, a multiple cluster analysis phenogram showed more dengue cases clustered in areas of land surface temperature >32 ◦ C, than in areas characterized as low socioeconomic zones, high population density areas, or slum-like areas. In laboratory experiments, A. aegypti mosquito larval development, blood feeding, and oviposition associated positively with temperatures of 28-32 ◦ C, indicating these temperatures to be favorable for dengue transmission. Thus, among all the variables studied, dengue incidence was most affected by the temperature.


Subject(s)
Animals , Humans , Aedes/physiology , Dengue/epidemiology , Hot Temperature , Insect Vectors/physiology , Brazil/epidemiology , Cluster Analysis , Cities/epidemiology , Dengue/transmission , Feeding Behavior/physiology , Geographic Information Systems , Incidence , Oviposition/physiology , Remote Sensing Technology , Seasons , Socioeconomic Factors , Urban Population
17.
Int Immunopharmacol ; 26(1): 13-22, 2015 May.
Article in English | MEDLINE | ID: mdl-25770821

ABSTRACT

Current therapies for inflammatory bowel disease (IBD) are not totally effective, resulting in persistent and recurrent disease for many patients. Mosquito saliva contains immunomodulatory molecules and therein could represent a novel therapy for IBD. Here, we demonstrated the therapeutic activity of salivary gland extract (SGE) of Aedes aegypti on dextran sulfate sodium (DSS)-induced colitis. For this purpose, C57BL/6 male mice were exposed to 3% DSS in drinking water and treated with SGE at early (days 3-5) or late (days 5-8) time points, followed by euthanasia on days 6 and 9, respectively, for sample collection. The results showed an improvement in clinical disease outcome and postmortem scores after SGE treatment, accompanied by the systemic reduction in peripheral blood lymphocytes, with no impact on bone marrow and mesenteric lymph nodes cellularity or macrophages toxicity. Moreover, a local diminishment of IFN-γ, TNF-α, IL-1ß and IL-5 cytokines together with a reduction in the inflammatory area were observed in the colon of SGE-treated mice. Strikingly, early treatment with SGE led to mice protection from a late DSS re-challenging, as observed by decreased clinical and postmortem scores, besides reduced circulating lymphocytes, indicating that the mosquito saliva may present components able to prevent disease relapse. Indeed, high performance liquid chromatography (HPLC) experiments pointed to a major SGE pool fraction (F3) able to ameliorate disease signs. In conclusion, SGE and its components might represent a source of important immunomodulatory molecules with promising therapeutic activity for IBD.


Subject(s)
Aedes/chemistry , Immunologic Factors/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Salivary Glands/chemistry , Tissue Extracts/therapeutic use , Animals , Cell Line , Cell Survival/drug effects , Colon/drug effects , Colon/immunology , Colon/pathology , Cytokines/analysis , Dextran Sulfate/administration & dosage , Dextran Sulfate/pharmacology , Disease Models, Animal , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , Immunologic Factors/immunology , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Male , Mice, Inbred C57BL , Tissue Extracts/administration & dosage , Tissue Extracts/adverse effects , Tissue Extracts/immunology
18.
Braz J Infect Dis ; 19(2): 146-55, 2015.
Article in English | MEDLINE | ID: mdl-25523076

ABSTRACT

Urban heat islands are characterized by high land surface temperature, low humidity, and poor vegetation, and considered to favor the transmission of the mosquito-borne dengue fever that is transmitted by the Aedes aegypti mosquito. We analyzed the recorded dengue incidence in Sao Paulo city, Brazil, in 2010-2011, in terms of multiple environmental and socioeconomic variables. Geographical information systems, thermal remote sensing images, and census data were used to classify city areas according to land surface temperature, vegetation cover, population density, socioeconomic status, and housing standards. Of the 7415 dengue cases, a majority (93.1%) mapped to areas with land surface temperature >28°C. The dengue incidence rate (cases per 100,000 inhabitants) was low (3.2 cases) in high vegetation cover areas, but high (72.3 cases) in low vegetation cover areas where the land surface temperature was 29±2°C. Interestingly, a multiple cluster analysis phenogram showed more dengue cases clustered in areas of land surface temperature >32°C, than in areas characterized as low socioeconomic zones, high population density areas, or slum-like areas. In laboratory experiments, A. aegypti mosquito larval development, blood feeding, and oviposition associated positively with temperatures of 28-32°C, indicating these temperatures to be favorable for dengue transmission. Thus, among all the variables studied, dengue incidence was most affected by the temperature.


Subject(s)
Aedes/physiology , Dengue/epidemiology , Hot Temperature , Insect Vectors/physiology , Animals , Brazil/epidemiology , Cities/epidemiology , Cluster Analysis , Dengue/transmission , Feeding Behavior/physiology , Geographic Information Systems , Humans , Incidence , Oviposition/physiology , Remote Sensing Technology , Seasons , Socioeconomic Factors , Urban Population
19.
J Pept Sci ; 20(8): 640-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24817179

ABSTRACT

Angiotensin II (AII) as well as analog peptides shows antimalarial activity against Plasmodium gallinaceum and Plasmodium falciparum, but the exact mechanism of action is still unknown. This work presents the solid-phase synthesis and characterization of eight peptides corresponding to the alanine scanning series of AII plus the amide-capped derivative and the evaluation of the antiplasmodial activity of these peptides against mature P. gallinaceum sporozoites. The Ala screening data indicates that the replacement of either the Ile(5) or the His(6) residues causes minor effects on the in vitro antiplasmodial activity compared with AII, i.e. AII (88%), [Ala(6) ]-AII (79%), and [Ala(5) ]-AII (75%). Analogs [Ala(3) ]-AII, [Ala(1) ]-AII, and AII-NH2 showed antiplasmodial activity around 65%, whereas the activity of the [Ala(8) ]-AII, [Ala(7) ]-AII, [Ala(4) ]-AII, and [Ala(2) ]-AII analogs is lower than 45%. Circular dichroism data suggest that AII and the most active analogs adopt a ß-fold conformation in different solutions. All AII analogs, except [Ala(4) ]-AII and [Ala(8) ]-AII, show contractile responses and interact with the AT1 receptor, [Ala(5) ]-AII and [Ala(6) ]-AII. In conclusion, this approach is helpful to understand the contribution of each amino acid residue to the bioactivity of AII, opening new perspectives toward the design of new sporozoiticidal compounds.


Subject(s)
Angiotensin II/analogs & derivatives , Antimalarials/chemical synthesis , Aedes/microbiology , Angiotensin II/chemical synthesis , Animals , Antimalarials/pharmacology , Chickens , Circular Dichroism , Peptides/chemical synthesis , Plasmodium gallinaceum/drug effects , Receptor, Angiotensin, Type 1/drug effects , Solid-Phase Synthesis Techniques
20.
Acta Trop ; 132 Suppl: S170-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24513036

ABSTRACT

Mosquitoes are responsible for the transmission of pathogens that cause devastating human diseases such as malaria and dengue. The current increase in mean global temperature and changing sea level interfere with precipitation frequency and some other climatic conditions which, in general, influence the rate of development of insects and etiologic agents causing acceleration as the temperature rises. The most common strategy employed to combat target mosquito species is the Integrated Vector Management (IVM), which comprises the use of multiple activities and various approaches to preventing the spread of a vector in infested areas. IVM programmes are becoming ineffective; and the global scenario is threatening, requiring new interventions for vector control and surveillance. Not surprisingly, there is a growing need to find alternative methods to combat the mosquito vectors. The possibility of using transgenic mosquitoes to fight against those diseases has been discussed over the last two decades and this use of transgenic lines to suppress populations or to replace them is still under investigation through field and laboratory trials. As an alternative, the available transgenic strategies could be improved by coupling suppression and substitution strategies. The idea is to first release a suppression line to significantly reduce the wild population, and once the first objective is reached a second release using a substitution line could be then performed. Examples of targeting this approach against vectors of malaria and dengue are discussed.


Subject(s)
Animals, Genetically Modified , Culicidae/growth & development , Insect Vectors , Mosquito Control/methods , Pest Control, Biological/methods , Animals , Culicidae/parasitology , Culicidae/virology , Dengue/prevention & control , Female , Malaria/prevention & control , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...