Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931441

ABSTRACT

Gastrointestinal parasitism is a major health and welfare problem in ruminants. Synthetic chemical anthelmintic drugs have led to the emergence of resistance in gastrointestinal strongyles, inducing the search for alternatives to control the infections that affect ruminants. The objective of this work was to evaluate the anthelmintic potential of plant extracts against Haemonchus contortus Rudolphi. Three plants of the Guadeloupean biodiversity, Momordica charantia L., Carica papaya L. and Sargassum spp., were selected based on their high polyphenolic content and natural abundance. The phytochemistry of plants was explored, a biological assay against the parasite H. contortus was carried out, and several hypotheses about the way of action were proposed by an innovative electrochemical screening method.

2.
Mol Med ; 30(1): 80, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858657

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that commonly results from a high-calorie diet and sedentary lifestyle, leading to insulin resistance and glucose homeostasis perturbation. Physical activity is recommended as one first-line treatment in T2DM, but it leads to contrasted results. We hypothesized that, instead of applying standard exercise protocols, the prescription of personalized exercise programs specifically designed to reverse the potential metabolic alterations in skeletal muscle could result in better results. METHODS: To test this hypothesis, we drew the metabolic signature of the fast-twitch quadriceps muscle, based on a combined unbiased NMR spectroscopy and RT-qPCR study, in several T2DM mouse models of different genetic background (129S1/SvImJ, C57Bl/6J), sex and aetiology (high-fat diet (HFD) or HFD/Streptozotocin (STZ) induction or transgenic MKR (FVB-Tg Ckm-IGF1R*K1003R)1Dlr/J) mice. Three selected mouse models with unique muscular metabolic signatures were submitted to three different swimming-based programs, designed to address each metabolic specificity. RESULTS: We found that depending on the genetic background, the sex, and the mode of T2DM induction, specific muscular adaptations occurred, including depressed glycolysis associated with elevated PDK4 expression, shift to ß-oxidation, or deregulation of amino-acid homeostasis. Interestingly, dedicated swimming-based exercises designed to restore specific metabolic alterations in muscle were found optimal in improving systemic T2DM hallmarks, including a significant reduction in insulin resistance, the improvement of glucose homeostasis, and a delay in sensorimotor function alterations. CONCLUSION: The muscle metabolism constitutes an important clue for the design of precision exercises with potential clinical implications for T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Disease Models, Animal , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/genetics , Muscle, Skeletal/metabolism , Mice , Male , Female , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Insulin Resistance , Metabolome , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/therapy , Mice, Transgenic , Metabolomics/methods
3.
Phys Chem Chem Phys ; 26(20): 14573-14581, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722087

ABSTRACT

The supramolecular interaction between lanthanide complexes and proteins is at the heart of numerous chemical and biological studies. Some of these complexes have demonstrated remarkable interaction properties with proteins or peptides in solution and in the crystalline state. Here we have used the paramagnetism of lanthanide ions to characterize the affinity of two lanthanide complexes for ubiquitin. As the interaction process is dynamic, the acquired NMR data only reflect the time average of the different steps. We have used molecular dynamics (MD) simulations to get a deeper insight into the detailed interaction scenario at the microsecond scale. This NMR/MD approach enabled us to establish that the tris-dipicolinate complex interacts specifically with arginines and lysines, while the crystallophore explores the protein surface through weak interactions with carboxylates. These observations shed new light on the dynamic interaction properties of these complexes, which will ultimately enable us to propose a crystallization mechanism.


Subject(s)
Lanthanoid Series Elements , Molecular Dynamics Simulation , Ubiquitin , Ubiquitin/chemistry , Lanthanoid Series Elements/chemistry , Nuclear Magnetic Resonance, Biomolecular , Picolinic Acids/chemistry , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL