Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Clin Cancer Res ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980931

ABSTRACT

PURPOSE: Co-occurring mutations in KEAP1 and STK11KRAS have emerged as determinants of survival outcomes in non-small cell lung cancer (NSCLC) patients treated with immunotherapy. However, these mutational contexts identify a fraction of non-responders to immune checkpoint inhibitors. We hypothesized that KEAP1 wild-type tumors recapitulate the transcriptional footprint of KEAP1 mutations, and that this KEAPness phenotype can determine immune responsiveness with higher precision compared to mutation-based models. EXPERIMENTAL DESIGN: The TCGA was used to infer the KEAPness phenotype and explore its immunological correlates at the pan-cancer level. The association between KEAPness and survival outcomes was tested in two independent cohorts of advanced NSCLC patients treated with immunotherapy and profiled by RNA-Seq (SU2C n=153; OAK/POPLAR n=439). The NSCLC TRACERx421 multi-region sequencing study (tumor regions n=947) was used to investigate evolutionary trajectories. RESULTS: KEAPness-dominant tumors represented 50% of all NSCLCs and were associated with shorter progression-free survival (PFS) and overall survival (OS) compared to KEAPness-free cases in independent cohorts of NSCLC patients treated with immunotherapy (SU2C PFS P=0.042, OS P=0.008; OAK/POPLAR PFS P=0.0014, OS P<0.001). Patients with KEAPness tumors had survival outcomes comparable to those with KEAP1-mutant tumors. In the TRACERx421, KEAPness exhibited limited transcriptional intratumoral heterogeneity and immune exclusion, resembling the KEAP1-mutant disease. This phenotypic state occurred across genetically divergent tumors, exhibiting shared and private cancer genes under positive selection when compared to KEAP1-mutant tumors. CONCLUSIONS: We identified a KEAPness phenotype across evolutionary divergent tumors. KEAPness outperforms mutation-based classifiers as a biomarker of inferior survival outcomes in NSCLC patients treated with immunotherapy.

2.
Nat Genet ; 56(7): 1420-1433, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956208

ABSTRACT

Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown. Here we show that microsatellite instability modulates DNA repair by toggling hypermutable mononucleotide homopolymer runs in MSH6 and MSH3 through stochastic frameshift switching. Spontaneous mutation and reversion modulate subclonal mutation rate, mutation bias and HLA and neoantigen diversity. Patient-derived organoids corroborate these observations and show that MMR homopolymer sequences drift back into reading frame in the absence of immune selection, suggesting a fitness cost of elevated mutation rates. Combined experimental and simulation studies demonstrate that subclonal immune selection favors incremental MMR mutations. Overall, our data demonstrate that MMR-deficient colorectal cancers fuel intratumor heterogeneity by adapting subclonal mutation rate and diversity to immune selection.


Subject(s)
Colorectal Neoplasms , DNA Mismatch Repair , Microsatellite Instability , Humans , Colorectal Neoplasms/genetics , DNA Mismatch Repair/genetics , DNA-Binding Proteins/genetics , Mutation , MutS Homolog 3 Protein/genetics , Mutation Rate , Frameshift Mutation/genetics
3.
Genome Biol ; 25(1): 38, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297376

ABSTRACT

Copy number alterations (CNAs) are among the most important genetic events in cancer, but their detection from sequencing data is challenging because of unknown sample purity, tumor ploidy, and general intra-tumor heterogeneity. Here, we present CNAqc, an evolution-inspired method to perform the computational validation of clonal and subclonal CNAs detected from bulk DNA sequencing. CNAqc is validated using single-cell data and simulations, is applied to over 4000 TCGA and PCAWG samples, and is incorporated into the validation process for the clinically accredited bioinformatics pipeline at Genomics England. CNAqc is designed to support automated quality control procedures for tumor somatic data validation.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , Algorithms , Polymorphism, Single Nucleotide , Neoplasms/genetics , Neoplasms/pathology , Genomics/methods , Computational Biology/methods
4.
Nat Commun ; 15(1): 323, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238294

ABSTRACT

The unexpected contamination of normal samples with tumour cells reduces variant detection sensitivity, compromising downstream analyses in canonical tumour-normal analyses. Leveraging whole-genome sequencing data available at Genomics England, we develop a tool for normal sample contamination assessment, which we validate in silico and against minimal residual disease testing. From a systematic review of [Formula: see text] patients with haematological malignancies and sarcomas, we find contamination across a range of cancer clinical indications and DNA sources, with highest prevalence in saliva samples from acute myeloid leukaemia patients, and sorted CD3+ T-cells from myeloproliferative neoplasms. Further exploration reveals 108 hotspot mutations in genes associated with haematological cancers at risk of being subtracted by standard variant calling pipelines. Our work highlights the importance of contamination assessment for accurate somatic variants detection in research and clinical settings, especially with large-scale sequencing projects being utilised to deliver accurate data from which to make clinical decisions for patient care.


Subject(s)
Neoplasms , Whole Genome Sequencing , Humans , Genomics , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/pathology
5.
PLoS Comput Biol ; 19(11): e1011557, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37917660

ABSTRACT

Single-cell RNA and ATAC sequencing technologies enable the examination of gene expression and chromatin accessibility in individual cells, providing insights into cellular phenotypes. In cancer research, it is important to consistently analyze these states within an evolutionary context on genetic clones. Here we present CONGAS+, a Bayesian model to map single-cell RNA and ATAC profiles onto the latent space of copy number clones. CONGAS+ clusters cells into tumour subclones with similar ploidy, rendering straightforward to compare their expression and chromatin profiles. The framework, implemented on GPU and tested on real and simulated data, scales to analyse seamlessly thousands of cells, demonstrating better performance than single-molecule models, and supporting new multi-omics assays. In prostate cancer, lymphoma and basal cell carcinoma, CONGAS+ successfully identifies complex subclonal architectures while providing a coherent mapping between ATAC and RNA, facilitating the study of genotype-phenotype maps and their connection to genomic instability.


Subject(s)
DNA Copy Number Variations , RNA , RNA/genetics , Bayes Theorem , DNA Copy Number Variations/genetics , Clone Cells , High-Throughput Nucleotide Sequencing/methods , Chromatin
6.
Nat Commun ; 14(1): 5982, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749078

ABSTRACT

Recurring sequences of genomic alterations occurring across patients can highlight repeated evolutionary processes with significant implications for predicting cancer progression. Leveraging the ever-increasing availability of cancer omics data, here we unveil cancer's evolutionary signatures tied to distinct disease outcomes, representing "favored trajectories" of acquisition of driver mutations detected in patients with similar prognosis. We present a framework named ASCETIC (Agony-baSed Cancer EvoluTion InferenCe) to extract such signatures from sequencing experiments generated by different technologies such as bulk and single-cell sequencing data. We apply ASCETIC to (i) single-cell data from 146 myeloid malignancy patients and bulk sequencing from 366 acute myeloid leukemia patients, (ii) multi-region sequencing from 100 early-stage lung cancer patients, (iii) exome/genome data from 10,000+ Pan-Cancer Atlas samples, and (iv) targeted sequencing from 25,000+ MSK-MET metastatic patients, revealing subtype-specific single-nucleotide variant signatures associated with distinct prognostic clusters. Validations on several datasets underscore the robustness and generalizability of the extracted signatures.


Subject(s)
Genomics , Neoplasms , Humans , Neoplasms/genetics , Exome/genetics , Patients , Technology
8.
Nat Commun ; 14(1): 3594, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328455

ABSTRACT

Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , Neoplasms/genetics , Genome , Mutation
9.
Res Sq ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37090678

ABSTRACT

Locally advanced oesophageal adenocarcinoma (EAC) remains difficult to treat because of common resistance to neoadjuvant therapy and high recurrence rates. The ecological and evolutionary dynamics responsible for treatment failure are incompletely understood. Here, we performed a comprehensive multi-omic analysis of samples collected from EAC patients in the MEMORI clinical trial, revealing major changes in gene expression profiles and immune microenvironment composition that did not appear to be driven by changes in clonal composition. Multi-region multi-timepoint whole exome (300x depth) and paired transcriptome sequencing was performed on 27 patients pre-, during and after neoadjuvant treatment. EAC showed major transcriptomic changes during treatment with upregulation of immune and stromal pathways and oncogenic pathways such as KRAS, Hedgehog and WNT. However, genetic data revealed that clonal sweeps were rare, suggesting that gene expression changes were not clonally driven. Additional longitudinal image mass cytometry was performed in a subset of 15 patients and T-cell receptor sequencing in 10 patients, revealing remodelling of the T-cell compartment during treatment and other shifts in microenvironment composition. The presence of immune escape mechanisms and a lack of clonal T-cell expansions were linked to poor clinical treatment response. This study identifies profound transcriptional changes during treatment with limited evidence that clonal replacement is the cause, suggesting phenotypic plasticity and immune dynamics as mechanisms for therapy resistance with pharmacological relevance.

10.
Nat Genet ; 55(3): 451-460, 2023 03.
Article in English | MEDLINE | ID: mdl-36894710

ABSTRACT

In cancer, evolutionary forces select for clones that evade the immune system. Here we analyzed >10,000 primary tumors and 356 immune-checkpoint-treated metastases using immune dN/dS, the ratio of nonsynonymous to synonymous mutations in the immunopeptidome, to measure immune selection in cohorts and individuals. We classified tumors as immune edited when antigenic mutations were removed by negative selection and immune escaped when antigenicity was covered up by aberrant immune modulation. Only in immune-edited tumors was immune predation linked to CD8 T cell infiltration. Immune-escaped metastases experienced the best response to immunotherapy, whereas immune-edited patients did not benefit, suggesting a preexisting resistance mechanism. Similarly, in a longitudinal cohort, nivolumab treatment removes neoantigens exclusively in the immunopeptidome of nonimmune-edited patients, the group with the best overall survival response. Our work uses dN/dS to differentiate between immune-edited and immune-escaped tumors, measuring potential antigenicity and ultimately helping predict response to treatment.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Nivolumab , Antigens, Neoplasm/genetics , CD8-Positive T-Lymphocytes , Mutation
12.
NPJ Precis Oncol ; 6(1): 89, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36456685

ABSTRACT

Activation-induced cytidine deaminase, AICDA or AID, is a driver of somatic hypermutation and class-switch recombination in immunoglobulins. In addition, this deaminase belonging to the APOBEC family may have off-target effects genome-wide, but its effects at pan-cancer level are not well elucidated. Here, we used different pan-cancer datasets, totaling more than 50,000 samples analyzed by whole-genome, whole-exome, or targeted sequencing. AID mutations are present at pan-cancer level with higher frequency in hematological cancers and higher presence at transcriptionally active TAD domains. AID synergizes initial hotspot mutations by a second composite mutation. AID mutational load was found to be independently associated with a favorable outcome in immune-checkpoint inhibitors (ICI) treated patients across cancers after analyzing 2000 samples. Finally, we found that AID-related neoepitopes, resulting from mutations at more frequent hotspots if compared to other mutational signatures, enhance CXCL13/CCR5 expression, immunogenicity, and T-cell exhaustion, which may increase ICI sensitivity.

13.
Nature ; 611(7937): 733-743, 2022 11.
Article in English | MEDLINE | ID: mdl-36289335

ABSTRACT

Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology.


Subject(s)
Colorectal Neoplasms , Epigenome , Genome, Human , Mutation , Humans , Adenoma/genetics , Adenoma/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chromatin/genetics , Chromatin/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epigenome/genetics , Oncogenes/genetics , Transcription Factors/metabolism , Genome, Human/genetics , Interferons
14.
Nature ; 611(7937): 744-753, 2022 11.
Article in English | MEDLINE | ID: mdl-36289336

ABSTRACT

Genetic and epigenetic variation, together with transcriptional plasticity, contribute to intratumour heterogeneity1. The interplay of these biological processes and their respective contributions to tumour evolution remain unknown. Here we show that intratumour genetic ancestry only infrequently affects gene expression traits and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired whole-genome and transcriptome sequencing, we find that the majority of intratumour variation in gene expression is not strongly heritable but rather 'plastic'. Somatic expression quantitative trait loci analysis identified a number of putative genetic controls of expression by cis-acting coding and non-coding mutations, the majority of which were clonal within a tumour, alongside frequent structural alterations. Consistently, computational inference on the spatial patterning of tumour phylogenies finds that a considerable proportion of CRCs did not show evidence of subclonal selection, with only a subset of putative genetic drivers associated with subclone expansions. Spatial intermixing of clones is common, with some tumours growing exponentially and others only at the periphery. Together, our data suggest that most genetic intratumour variation in CRC has no major phenotypic consequence and that transcriptional plasticity is, instead, widespread within a tumour.


Subject(s)
Adaptation, Physiological , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Phenotype , Humans , Adaptation, Physiological/genetics , Clone Cells/metabolism , Clone Cells/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Exome Sequencing , Transcription, Genetic
15.
Am J Hum Genet ; 109(5): 953-960, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35460607

ABSTRACT

We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5'-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management.


Subject(s)
Adenomatous Polyposis Coli , Colorectal Neoplasms , Uveal Neoplasms , Adenomatous Polyposis Coli/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Endodeoxyribonucleases/genetics , Genetic Predisposition to Disease , Germ Cells/pathology , Germ-Line Mutation/genetics , Humans , Uveal Neoplasms/genetics
16.
Bioinformatics ; 38(9): 2512-2518, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35298589

ABSTRACT

MOTIVATION: Cancers are composed by several heterogeneous subpopulations, each one harbouring different genetic and epigenetic somatic alterations that contribute to disease onset and therapy response. In recent years, copy number alterations (CNAs) leading to tumour aneuploidy have been identified as potential key drivers of such populations, but the definition of the precise makeup of cancer subclones from sequencing assays remains challenging. In the end, little is known about the mapping between complex CNAs and their effect on cancer phenotypes. RESULTS: We introduce CONGAS, a Bayesian probabilistic method to phase bulk DNA and single-cell RNA measurements from independent assays. CONGAS jointly identifies clusters of single cells with subclonal CNAs, and differences in RNA expression. The model builds statistical priors leveraging bulk DNA sequencing data, does not require a normal reference and scales fast thanks to a GPU backend and variational inference. We test CONGAS on both simulated and real data, and find that it can determine the tumour subclonal composition at the single-cell level together with clone-specific RNA phenotypes in tumour data generated from both 10× and Smart-Seq assays. AVAILABILITY AND IMPLEMENTATION: CONGAS is available as 2 packages: CONGAS (https://github.com/caravagnalab/congas), which implements the model in Python, and RCONGAS (https://caravagnalab.github.io/rcongas/), which provides R functions to process inputs, outputs and run CONGAS fits. The analysis of real data and scripts to generate figures of this paper are available via RCONGAS; code associated to simulations is available at https://github.com/caravagnalab/rcongas_test. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , Bayes Theorem , Software , Sequence Analysis, RNA , RNA , Neoplasms/genetics , Single-Cell Analysis
17.
Bioinformatics ; 38(3): 754-762, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34647978

ABSTRACT

MOTIVATION: Driver (epi)genomic alterations underlie the positive selection of cancer subpopulations, which promotes drug resistance and relapse. Even though substantial heterogeneity is witnessed in most cancer types, mutation accumulation patterns can be regularly found and can be exploited to reconstruct predictive models of cancer evolution. Yet, available methods can not infer logical formulas connecting events to represent alternative evolutionary routes or convergent evolution. RESULTS: We introduce PMCE, an expressive framework that leverages mutational profiles from cross-sectional sequencing data to infer probabilistic graphical models of cancer evolution including arbitrary logical formulas, and which outperforms the state-of-the-art in terms of accuracy and robustness to noise, on simulations. The application of PMCE to 7866 samples from the TCGA database allows us to identify a highly significant correlation between the predicted evolutionary paths and the overall survival in 7 tumor types, proving that our approach can effectively stratify cancer patients in reliable risk groups. AVAILABILITY AND IMPLEMENTATION: PMCE is freely available at https://github.com/BIMIB-DISCo/PMCE, in addition to the code to replicate all the analyses presented in the manuscript. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Neoplasms , Humans , Prognosis , Cross-Sectional Studies , Neoplasms/genetics , Genomics
18.
Nat Biotechnol ; 40(2): 235-244, 2022 02.
Article in English | MEDLINE | ID: mdl-34635836

ABSTRACT

Recent efforts have succeeded in surveying open chromatin at the single-cell level, but high-throughput, single-cell assessment of heterochromatin and its underlying genomic determinants remains challenging. We engineered a hybrid transposase including the chromodomain (CD) of the heterochromatin protein-1α (HP-1α), which is involved in heterochromatin assembly and maintenance through its binding to trimethylation of the lysine 9 on histone 3 (H3K9me3), and developed a single-cell method, single-cell genome and epigenome by transposases sequencing (scGET-seq), that, unlike single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), comprehensively probes both open and closed chromatin and concomitantly records the underlying genomic sequences. We tested scGET-seq in cancer-derived organoids and human-derived xenograft (PDX) models and identified genetic events and plasticity-driven mechanisms contributing to cancer drug resistance. Next, building upon the differential enrichment of closed and open chromatin, we devised a method, Chromatin Velocity, that identifies the trajectories of epigenetic modifications at the single-cell level. Chromatin Velocity uncovered paths of epigenetic reorganization during stem cell reprogramming and identified key transcription factors driving these developmental processes. scGET-seq reveals the dynamics of genomic and epigenetic landscapes underlying any cellular processes.


Subject(s)
Euchromatin , Heterochromatin , Chromatin/genetics , Epigenesis, Genetic/genetics , Euchromatin/genetics , Heterochromatin/genetics , Humans , Transposases/genetics
19.
BMC Bioinformatics ; 21(1): 531, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33203356

ABSTRACT

BACKGROUND: The large-scale availability of whole-genome sequencing profiles from bulk DNA sequencing of cancer tissues is fueling the application of evolutionary theory to cancer. From a bulk biopsy, subclonal deconvolution methods are used to determine the composition of cancer subpopulations in the biopsy sample, a fundamental step to determine clonal expansions and their evolutionary trajectories. RESULTS: In a recent work we have developed a new model-based approach to carry out subclonal deconvolution from the site frequency spectrum of somatic mutations. This new method integrates, for the first time, an explicit model for neutral evolutionary forces that participate in clonal expansions; in that work we have also shown that our method improves largely over competing data-driven methods. In this Software paper we present mobster, an open source R package built around our new deconvolution approach, which provides several functions to plot data and fit models, assess their confidence and compute further evolutionary analyses that relate to subclonal deconvolution. CONCLUSIONS: We present the mobster package for tumour subclonal deconvolution from bulk sequencing, the first approach to integrate Machine Learning and Population Genetics which can explicitly model co-existing neutral and positive selection in cancer. We showcase the analysis of two datasets, one simulated and one from a breast cancer patient, and overview all package functionalities.


Subject(s)
Breast Neoplasms/genetics , DNA, Neoplasm/genetics , Software , Whole Genome Sequencing , Cell Proliferation , Clone Cells , Data Analysis , Female , Genetics, Population , Humans , Machine Learning , Models, Genetic , Mutation/genetics
20.
Nat Genet ; 52(9): 898-907, 2020 09.
Article in English | MEDLINE | ID: mdl-32879509

ABSTRACT

Most cancer genomic data are generated from bulk samples composed of mixtures of cancer subpopulations, as well as normal cells. Subclonal reconstruction methods based on machine learning aim to separate those subpopulations in a sample and infer their evolutionary history. However, current approaches are entirely data driven and agnostic to evolutionary theory. We demonstrate that systematic errors occur in the analysis if evolution is not accounted for, and this is exacerbated with multi-sampling of the same tumor. We present a novel approach for model-based tumor subclonal reconstruction, called MOBSTER, which combines machine learning with theoretical population genetics. Using public whole-genome sequencing data from 2,606 samples from different cohorts, new data and synthetic validation, we show that this method is more robust and accurate than current techniques in single-sample, multiregion and longitudinal data. This approach minimizes the confounding factors of nonevolutionary methods, thus leading to more accurate recovery of the evolutionary history of human cancers.


Subject(s)
Neoplasms/genetics , Clonal Evolution/genetics , Genetics, Population/methods , Genomics/methods , Humans , Machine Learning , Whole Genome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL