Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 969, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326341

ABSTRACT

Natural aerosol feedbacks are expected to become more important in the future, as anthropogenic aerosol emissions decrease due to air quality policy. One such feedback is initiated by the increase in biogenic volatile organic compound (BVOC) emissions with higher temperatures, leading to higher secondary organic aerosol (SOA) production and a cooling of the surface via impacts on cloud radiative properties. Motivated by the considerable spread in feedback strength in Earth System Models (ESMs), we here use two long-term observational datasets from boreal and tropical forests, together with satellite data, for a process-based evaluation of the BVOC-aerosol-cloud feedback in four ESMs. The model evaluation shows that the weakest modelled feedback estimates can likely be excluded, but highlights compensating errors making it difficult to draw conclusions of the strongest estimates. Overall, the method of evaluating along process chains shows promise in pin-pointing sources of uncertainty and constraining modelled aerosol feedbacks.

2.
Natl Sci Rev ; 11(1): nwad138, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38116089

ABSTRACT

New particle formation (NPF) in the tropical free troposphere (FT) is a globally important source of cloud condensation nuclei, affecting cloud properties and climate. Oxidized organic molecules (OOMs) produced from biogenic volatile organic compounds are believed to contribute to aerosol formation in the tropical FT, but without direct chemical observations. We performed in situ molecular-level OOMs measurements at the Bolivian station Chacaltaya at 5240 m above sea level, on the western edge of Amazonia. For the first time, we demonstrate the presence of OOMs, mainly with 4-5 carbon atoms, in both gas-phase and particle-phase (in terms of mass contribution) measurements in tropical FT air from Amazonia. These observations, combined with air mass history analyses, indicate that the observed OOMs are linked to isoprene emitted from the rainforests hundreds of kilometers away. Based on particle-phase measurements, we find that these compounds can contribute to NPF, at least the growth of newly formed nanoparticles, in the tropical FT on a continental scale. Thus, our study is a fundamental and significant step in understanding the aerosol formation process in the tropical FT.

3.
NPJ Clim Atmos Sci ; 5(1): 79, 2022.
Article in English | MEDLINE | ID: mdl-36281291

ABSTRACT

Early career (EC) Earth system scientists in the Latin America and the Caribbean region (LAC) have been facing several issues, such as limited funding opportunities, substandard scientific facilities, lack of security of tenure, and unrepresented groups equality issues. On top of this, the worsening regional environmental and climatic crises call for the need for this new generation of scientists to help to tackle these crises by increasing public awareness and research. Realizing the need to converge and step up in making a collective action to be a part of the solution, the Latin America Early Career Earth System Scientist Network (LAECESS) was created in 2016. LAECESS's primary goals are to promote regional networking, foster integrated and interdisciplinary science, organize soft skills courses and workshops, and empower Latin American EC researchers. This article is an initial step towards letting the global science community grasp the current situation and hear the early career LAC science community's perspectives. The paper also presents a series of future steps needed for better scientific and social development in the LAC region.

4.
Sci Rep ; 8(1): 10679, 2018 07 16.
Article in English | MEDLINE | ID: mdl-30013098

ABSTRACT

The Sao Paulo Metropolitan Area is a unique case worldwide due to the extensive use of biofuel, particularly ethanol, by its large fleet of nearly 8 million cars. Based on source apportionment analysis of Organic Aerosols in downtown Sao Paulo, and using ethanol as tracer of passenger vehicles, we have identified primary emissions from light-duty-vehicles (LDV) and heavy-duty-vehicles (HDV), as well as secondary process component. Each of those factors mirror a relevant primary source or secondary process in this densely occupied area. Using those factors as predictors in a multiple linear regression analysis of a wide range of pollutants, we have quantified the role of primary LDV or HDV emissions, as well as atmospheric secondary processes, on air quality degradation. Results show a significant contribution of HDV emissions, despite contributing only about 5% of vehicles number in the region. The latter is responsible, for example, of 40% and 47% of benzene and black carbon atmospheric concentration, respectively. This work describes an innovative use of biofuel as a tracer of passenger vehicle emissions, allowing to better understand the role of vehicular sources on air quality degradation in one of most populated megacities worldwide.

5.
Nature ; 539(7629): 416-419, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27776357

ABSTRACT

The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.


Subject(s)
Aerosols/analysis , Rain , Aerosols/chemistry , Biomass , Brazil , Fires , Particle Size , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
6.
Environ Sci Technol ; 48(1): 827-36, 2014.
Article in English | MEDLINE | ID: mdl-24328080

ABSTRACT

Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Coal/analysis , Fuel Oils/analysis , Hot Temperature , Optical Phenomena , Wood/chemistry , Air Pollution/analysis , Particle Size , Particulate Matter/chemistry
7.
Environ Sci Technol ; 47(24): 14468-75, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24245691

ABSTRACT

Heavy fuel oil (HFO) is a commonly used fuel in industrial heating and power generation and for large marine vessels. In this study, the fine particle emissions of a 47 MW oil-fired boiler were studied at 30 MW power and with three different fuels. The studied fuels were HFO, water emulsion of HFO, and water emulsion of HFO mixed with light fuel oil (LFO). With all the fuels, the boiler emitted considerable amounts of particles smaller than 200 nm in diameter. Further, these small particles were quite hygroscopic even as fresh and, in the case of HFO+LFO emulsion, the hygroscopic growth of the particles was dependent on particle size. The use of emulsions and the addition of LFO to the fuel had a reducing effect on the hygroscopic growth of particles. The use of emulsions lowered the sulfate content of the smallest particles but did not affect significantly the sulfate content of particles larger than 42 nm and, further, the addition of LFO considerably increased the black carbon content of particulate matter. The results indicate that even the fine particles emitted from HFO based combustion can have a significant effect on cloud formation, visibility, and air quality.


Subject(s)
Air Pollutants/analysis , Fuel Oils , Heating , Particle Size , Particulate Matter/chemistry , Wettability , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...