Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36900504

ABSTRACT

The dairy field has considerable economic relevance in the agri-food system, but also has the need to develop new 'green' supply chain actions to ensure that sustainable products are in line with consumer requirements. In recent years, the dairy farming industry has generally improved in terms of equipment and product performance, but innovation must be linked to traditional product specifications. During cheese ripening, the storage areas and the direct contact of the cheese with the wood must be carefully managed because the proliferation of contaminating microorganisms, parasites, and insects increases significantly and product quality quickly declines, notably from a sensory level. The use of ozone (as gas or as ozonated water) can be effective for sanitizing air, water, and surfaces in contact with food, and its use can also be extended to the treatment of waste and process water. Ozone is easily generated and is eco-sustainable as it tends to disappear in a short time, leaving no residues of ozone. However, its oxidation potential can lead to the peroxidation of cheese polyunsaturated fatty acids. In this review we intend to investigate the use of ozone in the dairy sector, selecting the studies that have been most relevant over the last years.

2.
J Sci Food Agric ; 103(4): 2124-2133, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36562115

ABSTRACT

BACKGROUND: Ripened cheeses, such as pecorino, are susceptible to mites and molds contamination on the crust area that must be removed before the product can be marketed. This study investigates the effectiveness of gaseous ozone treatment in the control of microbiological and mite growth without negatively affecting product quality. RESULTS: Cheese samples were treated with gaseous ozone at 200 and 300 ppb for 8 h per day (overnight) for 150 days in storage rooms under controlled conditions (12 °C and 85% relative humidity). The results showed that ozone at 200 ppb limits the growth of mites starting from 25 days of storage and significantly reduced bacteria, molds, and yeasts counts starting from 75 days of storage. Concerning the physicochemical and qualitative parameters evaluated during ripening (weight loss, moisture content, dry weight, ash, fat, protein, total nitrogen, color, non-destructive firmness), no significant differences were shown between the control samples and ozone treatment at 200 ppb. Sensory analysis (consumer test) also showed no specific defects with the ozone-treated samples. It was observed that the ozone treatment at 300 ppb had limited microbiological growth and no alteration of sensory aspects but did not have the same positive impact on some aspects of overall quality, compared with ozone treatment at 200 ppb. CONCLUSION: The use of gaseous ozone treatments during ripening of pecorino cheese can potentially offer an excellent solution for the control of mite growth, while preserving the quality and sensory characteristics of the product. For this reason, this technique could be very useful for commercial purposes. © 2022 Society of Chemical Industry.


Subject(s)
Ozone , Ozone/pharmacology , Fungi , Pest Control
3.
J Sci Food Agric ; 98(2): 487-494, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28612399

ABSTRACT

BACKGROUND: A trial was conducted to evaluate the effect of postharvest gaseous ozone (O3 ) treatment on quality parameters and cell wall enzymes of cantaloupe melon cv. Caldeo during storage at 6 °C for 13 days. Fruits were kept in cold storage and treated with 0.15 ppm gaseous O3 during the day and 0.3 ppm overnight; control fruits (CK) were stored in normal atmosphere. RESULTS: Firmness was higher and ethylene concentration significantly lower in O3 fruits compared with CK fruits. During storage, microbial counts were lower in both O3 and CK fruits; from day 9, O3 fruits showed a significant decrease in mesophilic aerobes. Additionally, total carotenoids had a tendency to be higher, with no significant differences between CK and O3 fruits. The same trend was observed for ascorbic acid, colour, total soluble solids content and acidity. Finally, O3 treatment reduced the activities of cell wall enzymes α-arabinopyranosidase, ß-galactopyranosidase and polygalacturonase starting from day 3 of storage. Pectin methyl esterase activity did not seem to be affected by O3 treatment. CONCLUSION: Gaseous O3 treatment during cold storage was effective in decreasing ethylene production and delaying fruit softening in cantaloupe melon by extending quality maintenance. © 2017 Society of Chemical Industry.


Subject(s)
Cucumis melo/drug effects , Food Preservation/methods , Food Preservatives/pharmacology , Ozone/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Cucumis melo/chemistry , Cucumis melo/growth & development , Food Storage , Fruit/chemistry , Fruit/drug effects , Fruit/growth & development
4.
Food Res Int ; 98: 68-78, 2017 08.
Article in English | MEDLINE | ID: mdl-28610734

ABSTRACT

Recently the use of ozone as sanitizing agent has been proposed on winegrapes in order to control mycobiota after harvest. The aim of this work was to investigate possible indirect physico-chemical effects of ozone treatment on berry skin phenolic composition and extractability. Vitis vinifera L. cv Nebbiolo and Barbera, chosen for their different anthocyanin profiles, were post-harvest treated for 24 and 72h with gaseous ozone (30µL/L). Skin anthocyanin and flavanol extractability was assessed during maceration (6, 24, 48, 96, 168 and 240h) using a wine-like solution. In our experimental conditions, ozone did not affect significantly the final extraction yield of anthocyanins (TA), proanthocyanidins (PRO), and flavanols reactive to vanillin (FRV) in Barbera, although TA and FRV extractabilities were higher in control samples than in ozone-treated samples during the first stages of maceration. In Nebbiolo, the final TA extraction yield was positively influenced by the ozone treatment (68.6, 64.2, and 59.9% for 24h ozone-treated berries, 72h ozone-treated berries and control samples, respectively). Final PRO and FRV extractability also increased in both ozone-treated samples compared to the control (+8.6-9.1% for PRO and +7.3-11.7% for FRV). No significant differences were found among treatments for individual anthocyanins in both cultivars at the end of maceration. Therefore, the use of ozone as sanitizing agent in red varieties prior to winemaking process can be considered because it did not negatively affect the extractability of skin anthocyanins and flavanols.


Subject(s)
Food Handling , Fruit/chemistry , Ozone , Polyphenols/analysis , Vitis/chemistry , Wine/analysis , Anthocyanins/analysis , Flavonoids/analysis , Humans , Phenols/analysis , Proanthocyanidins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL