Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Open Source Softw ; 5(47): 1848, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-37192932

ABSTRACT

Chaste (Cancer, Heart And Soft Tissue Environment) is an open source simulation package for the numerical solution of mathematical models arising in physiology and biology. To date, Chaste development has been driven primarily by applications that include continuum modelling of cardiac electrophysiology ('Cardiac Chaste'), discrete cell-based modelling of soft tissues ('Cell-based Chaste'), and modelling of ventilation in lungs ('Lung Chaste'). Cardiac Chaste addresses the need for a high-performance, generic, and verified simulation framework for cardiac electrophysiology that is freely available to the scientific community. Cardiac chaste provides a software package capable of realistic heart simulations that is efficient, rigorously tested, and runs on HPC platforms. Cell-based Chaste addresses the need for efficient and verified implementations of cell-based modelling frameworks, providing a set of extensible tools for simulating biological tissues. Computational modelling, along with live imaging techniques, plays an important role in understanding the processes of tissue growth and repair. A wide range of cell-based modelling frameworks have been developed that have each been successfully applied in a range of biological applications. Cell-based Chaste includes implementations of the cellular automaton model, the cellular Potts model, cell-centre models with cell representations as overlapping spheres or Voronoi tessellations, and the vertex model. Lung Chaste addresses the need for a novel, generic and efficient lung modelling software package that is both tested and verified. It aims to couple biophysically-detailed models of airway mechanics with organ-scale ventilation models in a package that is freely available to the scientific community. Chaste is designed to be modular and extensible, providing libraries for common scientific computing infrastructure such as linear algebra operations, finite element meshes, and ordinary and partial differential equation solvers. This infrastructure is used by libraries for specific applications, such as continuum mechanics, cardiac models, and cell-based models. The software engineering techniques used to develop Chaste are intended to ensure code quality, re-usability and reliability. Primary applications of the software include cardiac and respiratory physiology, cancer and developmental biology.

2.
PLoS One ; 13(8): e0202410, 2018.
Article in English | MEDLINE | ID: mdl-30138401

ABSTRACT

Input-output (I/O) optimization at the low-level design of data layout on disk drastically impacts the efficiency of high performance computing (HPC) applications. However, such a low-level optimization is in general challenging, especially when using popular scientific file formats designed with an emphasis on portability and flexibility. To reconcile these two aspects, we present a novel low-level data layout for HPC applications, fully independent of the number of dimensions in the dataset. The new data layout improves reading and writing efficiency in large HPC applications using many processors, and in particular during parallel post-processing. Furthermore, its combination with a cached write mode, in order to aggregate multiple writes into larger ones, substantially decreased the writing times of the proposed strategy. When applied to our simulation framework for the forward calculation of the human electrocardiogram, the combined strategy resulted in drastic improvements in I/O performance, of up to 40% in writing and 93-98% in reading for post-processing tasks. Given the generality of the proposed strategies and scientific file formats used, our results may represent significant improvements in I/O performance of HPC applications across multiple disciplines, reducing execution and post-processing times and leading to a more efficient use of HPC resource envelopes.


Subject(s)
Electrocardiography , Models, Theoretical , Signal Processing, Computer-Assisted , Humans
3.
Europace ; 18(suppl 4): iv4-iv15, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28011826

ABSTRACT

AIMS: To investigate how variability in activation sequence and passive conduction properties translates into clinical variability in QRS biomarkers, and gain novel physiological knowledge on the information contained in the human QRS complex. METHODS AND RESULTS: Multiscale bidomain simulations using a detailed heart-torso human anatomical model are performed to investigate the impact of activation sequence characteristics on clinical QRS biomarkers. Activation sequences are built and validated against experimentally-derived ex vivo and in vivo human activation data. R-peak amplitude exhibits the largest variability in terms of QRS morphology, due to its simultaneous modulation by activation sequence speed, myocardial intracellular and extracellular conductivities, and propagation through the human torso. QRS width, however, is regulated by endocardial activation speed and intracellular myocardial conductivities, whereas QR intervals are only affected by the endocardial activation profile. Variability in the apico-basal location of activation sites on the anterior and posterior left ventricular wall is associated with S-wave progression in limb and precordial leads, respectively, and occasional notched QRS complexes in precordial derivations. Variability in the number of early activation sites successfully reproduces pathological abnormalities of the human conduction system in the QRS complex. CONCLUSION: Variability in activation sequence and passive conduction properties captures and explains a large part of the clinical variability observed in the human QRS complex. Our physiological insights allow for a deeper interpretation of human QRS biomarkers in terms of QRS morphology and location of early endocardial activation sites. This might be used to attain a better patient-specific knowledge of activation sequence from routine body-surface electrocardiograms.


Subject(s)
Action Potentials , Electrocardiography , Heart Block/physiopathology , Heart Conduction System/physiopathology , Heart Rate , Heart Ventricles/physiopathology , Models, Cardiovascular , Patient-Specific Modeling , Body Surface Potential Mapping , Case-Control Studies , Female , Heart Block/diagnosis , Humans , Male , Models, Anatomic , Predictive Value of Tests , Reproducibility of Results , Signal Processing, Computer-Assisted , Time Factors , Torso/anatomy & histology , Ventricular Function, Left , Ventricular Function, Right
4.
Europace ; 18(9): 1287-98, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26622055

ABSTRACT

Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting.


Subject(s)
Cardiology/methods , Cardiovascular Agents/therapeutic use , Heart Diseases , Pharmacology/methods , Translational Research, Biomedical/methods , Animals , Biomarkers/metabolism , Cardiac Imaging Techniques , Cardiotoxicity , Cardiovascular Agents/adverse effects , Cooperative Behavior , Diffusion of Innovation , Electrophysiologic Techniques, Cardiac , Heart Diseases/diagnostic imaging , Heart Diseases/drug therapy , Heart Diseases/metabolism , Heart Diseases/physiopathology , Humans , Interdisciplinary Communication , Models, Cardiovascular , Patient-Specific Modeling , Predictive Value of Tests , Prognosis , Public-Private Sector Partnerships
SELECTION OF CITATIONS
SEARCH DETAIL
...