Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
RSC Med Chem ; 15(3): 916-936, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516585

ABSTRACT

Building on previous investigations, structural modifications to the neuronal calcium ion channel blocker MONIRO-1 and related compounds were conducted that included replacement of the amide linker with an aniline and isosteric sulfonamide moiety, and the previously used strategy of substitution of the guanidinium group with less hydrophilic amine functionalities. A comprehensive SAR study revealed a number of phenoxyaniline and sulfonamide compounds that were more potent or had similar potency for the CaV2.2 and CaV3.2 channel compared to MONIRO-1 when evaluated in a FLIPR-based intracellular calcium response assay. Cytotoxicity investigations indicated that the sulfonamide analogues were well tolerated by Cos-7 cells at dosages required to inhibit both calcium ion channels. The sulfonamide derivatives were the most promising CaV2.2 inhibitors developed by us to date due, possessing high stability in plasma, low toxicity (estimated therapeutic index > 10), favourable CNS MPO scores (4.0-4.4) and high potency and selectivity, thereby, making this class of compounds suitable candidates for future in vivo studies.

2.
Commun Biol ; 7(1): 358, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519650

ABSTRACT

Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.


Subject(s)
Snake Bites , Humans , Snake Bites/drug therapy , Snake Venoms/toxicity , Snake Venoms/therapeutic use , Extracellular Matrix , Public Health
3.
Toxicon X ; 21: 100184, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38389571

ABSTRACT

Venoms comprise highly sophisticated bioactive molecules modulating ion channels, receptors, coagulation factors, and the cellular membranes. This array of targets and bioactivities requires advanced high-content bioassays to facilitate the development of novel envenomation treatments and biotechnological and pharmacological agents. In response to the existing gap in venom research, we developed a cutting-edge fluorescence-based high-throughput and high-content cellular assay. This assay enables the simultaneous identification of prevalent cellular activities induced by venoms such as membrane lysis, pore formation, and ion channel modulation. By integrating intracellular calcium with extracellular nucleic acid measurements, we have successfully distinguished these venom mechanisms within a single cellular assay. Our high-content bioassay was applied across three cell types exposed to venom components representing lytic, ion pore-forming or ion channel modulator toxins. Beyond unveiling distinct profiles for these action mechanisms, we found that the pore-forming latrotoxin α-Lt1a prefers human neuroblastoma to kidney cells and cardiomyocytes, while the lytic bee peptide melittin is not selective. Furthermore, evaluation of snake venoms showed that Elapid species induced rapid membrane lysis, while Viper species showed variable to no activity on neuroblastoma cells. These findings underscore the ability of our high-content bioassay to discriminate between clades and interspecific traits, aligning with clinical observations at venom level, beyond discriminating among ion pore-forming, membrane lysis and ion channel modulation. We hope our research will expedite the comprehension of venom biology and the diversity of toxins that elicit cytotoxic, cardiotoxic and neurotoxic effects, and assist in identifying venom components that hold the potential to benefit humankind.

4.
Front Pharmacol ; 14: 1277143, 2023.
Article in English | MEDLINE | ID: mdl-38034993

ABSTRACT

The structure-function and optimization studies of NaV-inhibiting spider toxins have focused on developing selective inhibitors for peripheral pain-sensing NaV1.7. With several NaV subtypes emerging as potential therapeutic targets, structure-function analysis of NaV-inhibiting spider toxins at such subtypes is warranted. Using the recently discovered spider toxin Ssp1a, this study extends the structure-function relationships of NaV-inhibiting spider toxins beyond NaV1.7 to include the epilepsy target NaV1.2 and the pain target NaV1.3. Based on these results and docking studies, we designed analogues for improved potency and/or subtype-selectivity, with S7R-E18K-rSsp1a and N14D-P27R-rSsp1a identified as promising leads. S7R-E18K-rSsp1a increased the rSsp1a potency at these three NaV subtypes, especially at NaV1.3 (∼10-fold), while N14D-P27R-rSsp1a enhanced NaV1.2/1.7 selectivity over NaV1.3. This study highlights the challenge of developing subtype-selective spider toxin inhibitors across multiple NaV subtypes that might offer a more effective therapeutic approach. The findings of this study provide a basis for further rational design of Ssp1a and related NaSpTx1 homologs targeting NaV1.2, NaV1.3 and/or NaV1.7 as research tools and therapeutic leads.

5.
Front Pharmacol ; 14: 1249336, 2023.
Article in English | MEDLINE | ID: mdl-37693897

ABSTRACT

Ion channels play a crucial role in diverse physiological processes, including neurotransmission and muscle contraction. Venomous creatures exploit the vital function of ion channels by producing toxins in their venoms that specifically target these ion channels to facilitate prey capture upon a bite or a sting. Envenoming can therefore lead to ion channel dysregulation, which for humans can result in severe medical complications that often necessitate interventions such as antivenom administration. Conversely, the discovery of highly potent and selective venom toxins with the capability of distinguishing between different isoforms and subtypes of ion channels has led to the development of beneficial therapeutics that are now in the clinic. This review encompasses the historical evolution of electrophysiology methodologies, highlighting their contributions to venom and antivenom research, including venom-based drug discovery and evaluation of antivenom efficacy. By discussing the applications and advancements in patch-clamp techniques, this review underscores the profound impact of electrophysiology in unravelling the intricate interplay between ion channels and venom toxins, ultimately leading to the development of drugs for envenoming and ion channel-related pathologies.

6.
Proc Natl Acad Sci U S A ; 120(29): e2305871120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428925

ABSTRACT

Larvae of the genus Megalopyge (Lepidoptera: Zygaenoidea: Megalopygidae), known as asp or puss caterpillars, produce defensive venoms that cause severe pain. Here, we present the anatomy, chemistry, and mode of action of the venom systems of caterpillars of two megalopygid species, the Southern flannel moth Megalopyge opercularis and the black-waved flannel moth Megalopyge crispata. We show that megalopygid venom is produced in secretory cells that lie beneath the cuticle and are connected to the venom spines by canals. Megalopygid venoms consist of large aerolysin-like pore-forming toxins, which we have named megalysins, and a small number of peptides. The venom system differs markedly from those of previously studied venomous zygaenoids of the family Limacodidae, suggestive of an independent origin. Megalopygid venom potently activates mammalian sensory neurons via membrane permeabilization and induces sustained spontaneous pain behavior and paw swelling in mice. These bioactivities are ablated by treatment with heat, organic solvents, or proteases, indicating that they are mediated by larger proteins such as the megalysins. We show that the megalysins were recruited as venom toxins in the Megalopygidae following horizontal transfer of genes from bacteria to the ancestors of ditrysian Lepidoptera. Megalopygids have recruited aerolysin-like proteins as venom toxins convergently with centipedes, cnidarians, and fish. This study highlights the role of horizontal gene transfer in venom evolution.


Subject(s)
Bites and Stings , Moths , Toxins, Biological , Animals , Mice , Gene Transfer, Horizontal , Moths/genetics , Larva/genetics , Venoms , Pain , Mammals
8.
Pain ; 164(5): 1012-1026, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36279179

ABSTRACT

ABSTRACT: The bladder wall is innervated by a complex network of afferent nerves that detect bladder stretch during filling. Sensory signals, generated in response to distension, are relayed to the spinal cord and brain to evoke physiological and painful sensations and regulate urine storage and voiding. Hyperexcitability of these sensory pathways is a key component in the development of chronic bladder hypersensitivity disorders including interstitial cystitis/bladder pain syndrome and overactive bladder syndrome. Despite this, the full array of ion channels that regulate bladder afferent responses to mechanical stimuli have yet to be determined. Here, we investigated the role of low-voltage-activated T-type calcium (Ca V 3) channels in regulating bladder afferent responses to distension. Using single-cell reverse-transcription polymerase chain reaction and immunofluorescence, we revealed ubiquitous expression of Ca V 3.2, but not Ca V 3.1 or Ca V 3.3, in individual bladder-innervating dorsal root ganglia neurons. Pharmacological inhibition of Ca V 3.2 with TTA-A2 and ABT-639, selective blockers of T-type calcium channels, dose-dependently attenuated ex-vivo bladder afferent responses to distension in the absence of changes to muscle compliance. Further evaluation revealed that Ca V 3.2 blockers significantly inhibited both low- and high-threshold afferents, decreasing peak responses to distension, and delayed activation thresholds, thereby attenuating bladder afferent responses to both physiological and noxious distension. Nocifensive visceromotor responses to noxious bladder distension in vivo were also significantly reduced by inhibition of Ca V 3 with TTA-A2. Together, these data provide evidence of a major role for Ca V 3.2 in regulating bladder afferent responses to bladder distension and nociceptive signalling to the spinal cord.


Subject(s)
Calcium Channels, T-Type , Cystitis, Interstitial , Humans , Urinary Bladder/innervation , Neurons, Afferent/physiology , Calcium Channels, T-Type/metabolism , Afferent Pathways/physiology , Cystitis, Interstitial/metabolism , Ganglia, Spinal/metabolism
9.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361863

ABSTRACT

Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.


Subject(s)
Spider Venoms , Spiders , Animals , Humans , Spider Venoms/toxicity , Spider Venoms/chemistry , Trees , Australia , Peptides
11.
RSC Med Chem ; 13(2): 183-195, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35308021

ABSTRACT

A number of tricyclic antidepressants (TCAs) are commonly prescribed off-label for the treatment of neuropathic pain. The blockade of neuronal calcium ion channels is often invoked to partially explain the analgesic activity of TCAs, but there has been very limited experimental or theoretical evidence reported to support this assertion. The N-type calcium ion channel (CaV2.2) is a well-established target for the treatment of neuropathic pain and in this study a series of eleven TCAs and two closely related drugs were shown to be moderately effective inhibitors of this channel when endogenously expressed in the SH-SY5Y neuroblastoma cell line. A homology model of the channel, which matches closely a recently reported Cryo-EM structure, was used to investigate via docking and molecular dynamics experiments the possible mode of inhibition of CaV2.2 channels by TCAs. Two closely related binding modes, that occur in the channel cavity that exists between the selectivity filter and the internal gate, were identified. The TCAs are predicted to position themselves such that their ammonium side chains interfere with the selectivity filter, with some, such as amitriptyline, also appearing to hinder the channel's ability to open. This study provides the most comprehensive evidence to date that supports the notion that the blockade of neuronal calcium ion channels by TCAs is at least partially responsible for their analgesic effect.

12.
ACS Pharmacol Transl Sci ; 4(4): 1362-1378, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34423271

ABSTRACT

The human nociceptor-specific voltage-gated sodium channel 1.7 (hNaV1.7) is critical for sensing various types of somatic pain, but it appears not to play a primary role in acute visceral pain. However, its role in chronic visceral pain remains to be determined. We used assay-guided fractionation to isolate a novel hNaV1.7 inhibitor, Tsp1a, from tarantula venom. Tsp1a is 28-residue peptide that potently inhibits hNaV1.7 (IC50 = 10 nM), with greater than 100-fold selectivity over hNaV1.3-hNaV1.6, 45-fold selectivity over hNaV1.1, and 24-fold selectivity over hNaV1.2. Tsp1a is a gating modifier that inhibits NaV1.7 by inducing a hyperpolarizing shift in the voltage-dependence of channel inactivation and slowing recovery from fast inactivation. NMR studies revealed that Tsp1a adopts a classical knottin fold, and like many knottin peptides, it is exceptionally stable in human serum. Remarkably, intracolonic administration of Tsp1a completely reversed chronic visceral hypersensitivity in a mouse model of irritable bowel syndrome. The ability of Tsp1a to reduce visceral hypersensitivity in a model of irritable bowel syndrome suggests that pharmacological inhibition of hNaV1.7 at peripheral sensory nerve endings might be a viable approach for eliciting analgesia in patients suffering from chronic visceral pain.

13.
PLoS One ; 16(3): e0243645, 2021.
Article in English | MEDLINE | ID: mdl-33667217

ABSTRACT

Chemical transfection is broadly used to transiently transfect mammalian cells, although often associated with cellular stress and membrane instability, which imposes challenges for most cellular assays, including high-throughput (HT) assays. In the current study, we compared the effectiveness of calcium phosphate, FuGENE and Lipofectamine 3000 to transiently express two key voltage-gated ion channels critical in pain pathways, CaV2.2 and NaV1.7. The expression and function of these channels were validated using two HT platforms, the Fluorescence Imaging Plate Reader FLIPRTetra and the automated patch clamp QPatch 16X. We found that all transfection methods tested demonstrated similar effectiveness when applied to FLIPRTetra assays. Lipofectamine 3000-mediated transfection produced the largest peak currents for automated patch clamp QPatch assays. However, the FuGENE-mediated transfection was the most effective for QPatch assays as indicated by the superior number of cells displaying GΩ seal formation in whole-cell patch clamp configuration, medium to large peak currents, and higher rates of accomplished assays for both CaV2.2 and NaV1.7 channels. Our findings can facilitate the development of HT automated patch clamp assays for the discovery and characterization of novel analgesics and modulators of pain pathways, as well as assisting studies examining the pharmacology of mutated channels.


Subject(s)
Calcium Channels, N-Type/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics , Transfection/methods , Action Potentials/drug effects , Analgesics/pharmacology , Animals , CHO Cells , Calcium Channels, N-Type/metabolism , Cricetinae , Cricetulus , HEK293 Cells , High-Throughput Screening Assays , Humans , Microscopy, Fluorescence , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/metabolism , Pain/pathology , Patch-Clamp Techniques
14.
Front Pharmacol ; 12: 795455, 2021.
Article in English | MEDLINE | ID: mdl-35002728

ABSTRACT

Given the important role of voltage-gated sodium (NaV) channel-modulating spider toxins in elucidating the function, pharmacology, and mechanism of action of therapeutically relevant NaV channels, we screened the venom from Australian theraphosid species against the human pain target hNaV1.7. Using assay-guided fractionation, we isolated a 33-residue inhibitor cystine knot (ICK) peptide (Ssp1a) belonging to the NaSpTx1 family. Recombinant Ssp1a (rSsp1a) inhibited neuronal hNaV subtypes with a rank order of potency hNaV1.7 > 1.6 > 1.2 > 1.3 > 1.1. rSsp1a inhibited hNaV1.7, hNaV1.2 and hNaV1.3 without significantly altering the voltage-dependence of activation, inactivation, or delay in recovery from inactivation. However, rSsp1a demonstrated voltage-dependent inhibition at hNaV1.7 and rSsp1a-bound hNaV1.7 opened at extreme depolarizations, suggesting rSsp1a likely interacted with voltage-sensing domain II (VSD II) of hNaV1.7 to trap the channel in its resting state. Nuclear magnetic resonance spectroscopy revealed key structural features of Ssp1a, including an amphipathic surface with hydrophobic and charged patches shown by docking studies to comprise the interacting surface. This study provides the basis for future structure-function studies to guide the development of subtype selective inhibitors.

15.
Pain ; 162(2): 569-581, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32826759

ABSTRACT

ABSTRACT: Chronic pain is a serious debilitating condition that affects ∼20% of the world's population. Currently available drugs fail to produce effective pain relief in many patients and have dose-limiting side effects. Several voltage-gated sodium (NaV) and calcium (CaV) channels are implicated in the etiology of chronic pain, particularly NaV1.1, NaV1.3, NaV1.7-NaV1.9, CaV2.2, and CaV3.2. Numerous NaV and CaV modulators have been described, but with few exceptions, they display poor potency and/or selectivity for pain-related channel subtypes. Here, we report the discovery and characterization of 2 novel tarantula-venom peptides (Tap1a and Tap2a) isolated from Theraphosa apophysis venom that modulate the activity of both NaV and CaV3 channels. Tap1a and Tap2a inhibited on-target NaV and CaV3 channels at nanomolar to micromolar concentrations and displayed moderate off-target selectivity for NaV1.6 and weak affinity for NaV1.4 and NaV1.5. The most potent inhibitor, Tap1a, nearly ablated neuronal mechanosensitivity in afferent fibers innervating the colon and the bladder, with in vivo intracolonic administration reversing colonic mechanical hypersensitivity in a mouse model of irritable bowel syndrome. These findings suggest that targeting a specific combination of NaV and CaV3 subtypes provides a novel route for treatment of chronic visceral pain.


Subject(s)
Chronic Pain , Irritable Bowel Syndrome , Pharmaceutical Preparations , Spider Venoms , Visceral Pain , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Calcium Channels , Chronic Pain/drug therapy , Humans , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/drug therapy , Mice , NAV1.7 Voltage-Gated Sodium Channel/genetics , Peptides/pharmacology , Sodium , Spider Venoms/pharmacology , Spider Venoms/therapeutic use , Visceral Pain/drug therapy
16.
J Med Chem ; 63(21): 12773-12785, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33078946

ABSTRACT

Voltage-gated sodium (NaV) channels are pore-forming transmembrane proteins that play essential roles in excitable cells, and they are key targets for antiepileptic, antiarrhythmic, and analgesic drugs. We implemented a heterobivalent design strategy to modulate the potency, selectivity, and binding kinetics of NaV channel ligands. We conjugated µ-conotoxin KIIIA, which occludes the pore of the NaV channels, to an analogue of huwentoxin-IV, a spider-venom peptide that allosterically modulates channel gating. Bioorthogonal hydrazide and copper-assisted azide-alkyne cycloaddition conjugation chemistries were employed to generate heterobivalent ligands using polyethylene glycol linkers spanning 40-120 Å. The ligand with an 80 Å linker had the most pronounced bivalent effects, with a significantly slower dissociation rate and 4-24-fold higher potency compared to those of the monovalent peptides for the human NaV1.4 channel. This study highlights the power of heterobivalent ligand design and expands the repertoire of pharmacological probes for exploring the function of NaV channels.


Subject(s)
Ligands , NAV1.4 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Voltage-Gated Sodium Channel Blockers/chemistry , Action Potentials/drug effects , Amino Acid Sequence , Animals , Binding Sites , Conotoxins/chemistry , Conotoxins/metabolism , Cycloaddition Reaction , Humans , Inhibitory Concentration 50 , Kinetics , Molecular Docking Simulation , NAV1.4 Voltage-Gated Sodium Channel/chemistry , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Patch-Clamp Techniques , Polyethylenes/chemistry , Spider Venoms/chemical synthesis , Spider Venoms/chemistry , Spider Venoms/metabolism , Spiders/metabolism , Voltage-Gated Sodium Channel Blockers/chemical synthesis , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology
17.
Bioorg Med Chem ; 28(18): 115655, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32828422

ABSTRACT

Structural modifications of the neuronal calcium channel blocker MONIRO-1, including constraining the phenoxyaniline portion of the molecule and replacing the guanidinium functionality with tertiary amines, led to compounds with significantly improved affinities for the endogenously expressed CaV2.2 channel in the SH-SY5Y neuroblastoma cell line. These analogues also showed promising activity towards the CaV3.2 channel, recombinantly expressed in HEK293T cells. Both of these ion channels have received attention as likely targets for the treatment of neuropathic pain. The dibenzoazepine and dihydrobenzodiazepine derivatives prepared in this study show an encouraging combination of neuronal calcium ion channel inhibitory potency, plasma stability and potential to cross the blood-brain-barrier.


Subject(s)
Anilides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Benzodiazepines/chemistry , Calcium Channel Blockers/chemical synthesis , Calcium Channels/metabolism , Neuralgia/drug therapy , Recombinant Proteins/metabolism , Anilides/metabolism , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Blood-Brain Barrier/metabolism , Calcium/metabolism , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels/genetics , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Neurons/metabolism , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Signal Transduction , Structure-Activity Relationship
18.
Mar Drugs ; 18(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629781

ABSTRACT

The 27-amino acid (aa)-long d-conotoxin TxVIA, originally isolated from the mollusc-hunting cone snail Conus textile, slows voltage-gated sodium (NaV) channel inactivation in molluscan neurons, but its mammalian ion channel targets remain undetermined. In this study, we confirmed that TxVIA was inactive on mammalian NaV1.2 and NaV1.7 even at high concentrations (10 µM). Given the fact that invertebrate NaV channel and T-type calcium channels (CaV3.x) are evolutionarily related, we examined the possibility that TxVIA may act on CaV3.x. Electrophysiological characterisation of the native TxVIA on CaV3.1, 3.2 and 3.3 revealed that TxVIA preferentially inhibits CaV3.2 current (IC50 = 0.24 mM) and enhances CaV3.1 current at higher concentrations. In fish bioassays TxVIA showed little effect on zebrafish behaviours when injected intramuscular at 250 ng/100 mg fish. The binding sites for TxVIA at NaV1.7 and CaV3.1 revealed that their channel binding sites contained a common epitope.


Subject(s)
Conotoxins/pharmacology , Animals , Calcium Channels, T-Type , Cell Line , Humans , Models, Molecular , Protein Binding , Protein Conformation , Rats , Zebrafish
19.
Biochem Pharmacol ; 181: 114107, 2020 11.
Article in English | MEDLINE | ID: mdl-32579958

ABSTRACT

Venom peptides are amongst the most exquisite group of bioactive molecules able to alter the normal physiology of organisms. These bioactive peptides penetrate tissues and blood vessels to encounter a number of receptors and ion channels to which they bind with high affinity and execute modulatory activities. Arachnid is the most diverse class of venomous animals often rich in peptides modulating voltage-gated sodium (NaV), calcium (CaV), and potassium (KV) channels. Spider venoms, in particular, contain potent and selective peptides targeting these channels, with a few displaying interesting multi-target properties for NaV and CaV channels underlying disease mechanisms such as in neuropathic pain, motor neuron disease and cancer. The elucidation of the pharmacology and structure-function properties of these venom peptides are invaluable for the development of effective drugs targeting NaV and CaV channels. This perspective discusses spider venom peptides displaying multi-target properties to modulate NaV and CaV channels in regard to their pharmacological features, structure-function relationships and potential to become the next generation of effective drugs to treat neurological disorders and other multi-ion channels related diseases.


Subject(s)
Calcium Channel Blockers/therapeutic use , Motor Neuron Disease/drug therapy , Neoplasms/drug therapy , Neuralgia/drug therapy , Peptides/therapeutic use , Sodium Channel Blockers/therapeutic use , Animals , Calcium Channel Blockers/chemistry , Humans , Molecular Targeted Therapy/methods , Motor Neuron Disease/metabolism , Neoplasms/metabolism , Neuralgia/metabolism , Peptides/chemistry , Sodium Channel Blockers/chemistry , Venoms/chemistry , Venoms/metabolism
20.
BMJ Open ; 9(12): e032091, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31874878

ABSTRACT

INTRODUCTION: Chronic venous insufficiency (CVI) is an anomaly of the normal functioning of the venous system caused by valvular incompetence with or without the obstruction of venous flow. This condition can affect either or both of the superficial and the deep venous systems. Venous dysfunction can even result in congenital or acquired disorders, and its complications include venous leg ulcers (VLUs). The objective of this systematic review is to determine the effectiveness of Unna boot in the treatment of wound healing of VLU by assessing the quality of the available evidence. METHODS AND ANALYSIS: A literature search in PubMed, CINAHL, Scopus, Web of Science, Cochrane Library, BVS/BIREME, Embase, ProQuest, BDTD, Thesis and Dissertation Catalog, Sao Paulo Research Foundation/Thesis and dissertation, OPEN THESIS, A service of the US National Institute of Health, Center for Reviews and Dissemination-University of New York and SciElo published in the last 10 years, the period from January 1999 to March 2019. The review will include primary studies (original), and Controlled Trials or Observational studies (cross-sectional, case-control or longitudinal studies) with VLU. The exclusion will include leg ulceration due to different causes, such as pressure, arterial, diabetic or mixed-aetiology leg ulcers. Data synthesis will be performed using a narrative summary and quantitative analysis. ETHICS AND DISSEMINATION: This systematic review does not require approval by the ethics committee, as individual patient data will not be collected. Dissemination of findings will be through publications in peer-reviewed journals and/or via conference presentations. PROSPERO REGISTRATION NUMBER: CRD42019127947.


Subject(s)
Occlusive Dressings/standards , Varicose Ulcer/therapy , Humans , Lower Extremity/blood supply , Varicose Ulcer/etiology , Venous Insufficiency/complications , Wound Healing , Systematic Reviews as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...