Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mar Pollut Bull ; 203: 116428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735170

ABSTRACT

The steel industry is a significant worldwide source of atmospheric particulate matter (PM). Part of PM may settle (SePM) and deposit metal/metalloid and metallic nanoparticles in aquatic ecosystems. However, such an air-to-water cross-contamination is not observed by most monitoring agencies. The region of Vitoria City is the main location of iron processing for exports in Brazil, and it has rivers, estuaries, and coastal areas affected by SePM. We have evaluated the effects of SePM on a local representative fish species, the fat snook, Centropomus parallelus. After acclimation, 48 fishes (61.67 ± 27.83 g) were individually exposed for 96 h to diverse levels of SePM (0.0, 0.01, 0.1 and 1 g/L-1). The presence of metals in the blood and several blood biomarkers were analyzed to evaluate the impact of SePM on stress signaling, blood oxygen transport capacity, and innate immune activity. Metal bioaccumulation was measured from blood in two separately analyzed compartments: intracellular (erythrocytes plus white blood cells) and extracellular (plasma). The major metals present at all contamination levels in both compartments were Fe and Zn, followed by Al and Cu, plus traces of 'Emerging metals': Ba, Ce, La, Rb, Se, Sr, and Ti. Emerging metals refer to those that have recently been identified in water as contaminants, encompassing rare earth elements and critical technology elements, as documented in previous studies (See REEs and TCEs in Cobelo-García et al., 2015; Batley et al., 2022). Multivariate analysis revealed that SePM had strong, dose-dependent correlations with all biomarker groups and indicated that blood oxygen-carrying capacity had the highest contamination responsiveness. Metal contamination also increased cortisol and blood glucose levels, attesting to increased stress signaling, and had a negative effect on innate immune activity. Knowledge of the risks related to SePM contamination remains rudimentary. However, the fact that there was metal bioaccumulation, causing impairment of fundamental physiological and cellular processes in this ecologically relevant fish species, consumed by the local human population, highlights the pressing need for further monitoring and eventual control of SePM contamination.


Subject(s)
Immunity, Innate , Particulate Matter , Water Pollutants, Chemical , Animals , Immunity, Innate/drug effects , Particulate Matter/toxicity , Water Pollutants, Chemical/toxicity , Environmental Monitoring , Steel , Brazil , Metals/toxicity , Air Pollutants/toxicity
2.
Sensors (Basel) ; 23(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067858

ABSTRACT

In the rapidly evolving urban advanced mobility (UAM) sphere, Vehicular Ad Hoc Networks (VANETs) are crucial for robust communication and operational efficiency in future urban environments. This paper quantifies VANETs to improve their reliability and availability, essential for integrating UAM into urban infrastructures. It proposes a novel Stochastic Petri Nets (SPN) method for evaluating VANET-based Vehicle Communication and Control (VCC) architectures, crucial given the dynamic demands of UAM. The SPN model, incorporating virtual machine (VM) migration and Edge Computing, addresses VANET integration challenges with Edge Computing. It uses stochastic elements to mirror VANET scenarios, enhancing network robustness and dependability, vital for the operational integrity of UAM. Case studies using this model offer insights into system availability and reliability, guiding VANET optimizations for UAM. The paper also applies a Design of Experiments (DoE) approach for a sensitivity analysis of SPN components, identifying key parameters affecting system availability. This is critical for refining the model for UAM efficiency. This research is significant for monitoring UAM systems in future cities, presenting a cost-effective framework over traditional methods and advancing VANET reliability and availability in urban mobility contexts.

3.
Article in English | MEDLINE | ID: mdl-35331889

ABSTRACT

Steel industry emissions of atmospheric particulate matter are responsible for air to water cross-contamination, which deposits metal/metalloid contaminants in aquatic ecosystems. This source of contamination has not been considered in most of the environmental monitoring protocols. Settleable atmospheric particulate matter (SePM) collected in an area of steel industry influence was used to analyze the sublethal effects on the hematological and innate immunological variables in Nile tilapia (Oreochromis niloticus) after short-term exposure (96 h). Blood samples were analyzed to evaluate the oxygen-carrying transport capacity, innate immune activity and stress biomarkers after exposure to ecologically relevant concentration of SePM. The exposure reduced blood oxygen-carrying capacity by lessening hematocrit, hemoglobin, erythrocyte, and mean corpuscular hemoglobin concentration. Compensatory increments in mean corpuscular volume and mean corpuscular hemoglobin have also been observed. The contaminant impacted the immune system by reducing the number of leukocytes, thrombocytes, and monocytes, total plasma protein, leukocyte respiratory activity, and by increasing lysozyme concentration. Furthermore, the contaminant caused endocrine stress response, raising plasma cortisol and glucose. Therefore, the alterations caused by SePM threatened the capacity of sustaining aerobic metabolism, impaired the immune system, and changed the energy allocation due to both stress response and immune effect. This may have important implications for the impact of SePM on aquatic ecosystems. Future investigations should assess SePM impact on general physiology and aerobic performance, especially to face common ecological challenges such as hypoxia and sustained swimming. These results point out the need to develop proper protocols to address the air-to-water cross-contamination risks by iron ore processing industries.


Subject(s)
Cichlids , Animals , Conservation of Natural Resources , Ecosystem , Immunity, Innate , Oxygen , Particulate Matter/toxicity , Steel , Water
4.
Environ Sci Pollut Res Int ; 29(8): 11685-11698, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34546525

ABSTRACT

The insecticide fipronil and the herbicide 2,4-D are the most applied pesticides in sugarcane crops leading to aquatic contamination. The whole-body bioconcentration of fipronil and 2,4-D, single and in mixture, was evaluated in Danio rerio after 96-h exposure. The activities of catalase (CAT) and glutathione S-transferase(GST) in whole body and in the gills and the acetylcholinesterase (AChE) in muscle were determined. The gill histopathology and the morphology of the pavement (PVC) and the mitochondria-rich(MRC) cells at gill surface were analyzed. Bioconcentration occurred after exposure to fipronil (2.69 L kg-1) and 2,4-D (1.73 L kg-1) single and in mixture of fipronil (3.10 L kg-1) and 2,4-D (1.27 L kg-1). Whole-body CAT activity was unchanged, and its activity decreased in the gills after exposure to fipronil and increased after exposure to 2,4-D and mixture. GST and AChE increased after single exposure to each pesticide and mixture of both. Fish exposed to mixture increased the MRC fractional area (MRCFA) which suggested possible ionic regulation disturbance and reduced the microridge of the PVC surface. Synergistic interactions occurred in the CAT activity and MRCFA after exposure to mixture of pesticides. The results indicate that the recommended application dose of fipronil and 2,4-D, single or in mixture, for sugarcane crops affects this fish species altering its homeostasis.


Subject(s)
Water Pollutants, Chemical , Zebrafish , 2,4-Dichlorophenoxyacetic Acid/toxicity , Acetylcholinesterase , Animals , Bioaccumulation , Catalase/metabolism , Glutathione Transferase/metabolism , Pyrazoles , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
5.
Fish Shellfish Immunol ; 114: 293-300, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34004271

ABSTRACT

Functional additives of natural origin included as dietary supplements have become an alternative to synthetic antibiotics to improve health and resistance to ecologically correct pathogenic diseases in fish farming. We tested whether incorporating a mixture of phytobiotics such as volatile oils of thyme, red thyme and pepper rosemary into the diet improves growth performance, oxidative stress, immune and hematological responses and resistance of juvenile Nile tilapia when subjected to a challenge with Aeromonas hydrophila compared to a synthetic antibiotic (enrofloxacin). The experimental design was completely randomized with three experimental groups: control diet, diets containing a mixture of thyme phytobiotic essential oils, red thyme and pepper rosemary (FTB) and the synthetic antibiotic enrofloxacin (ATB), with four replicates (14 fish per repetition/experimental unit). Plasma glucose levels, leukocyte respiratory activity, serum lysozyme levels, number of circulating erythrocytes and leukocytes, levels of lipid peroxidation (LPO), catalase (CAT) and glutathione S-transferase (GST) activity at the end of 20 days of feeding (phase) were evaluated and 24 h after exposure to bacteria (phase II). The supplementation of FTB and ATB did not change the performance parameters, but it was sufficient to increase lysozyme, leukocytes, neutrophils and monocytes after the bacterial challenge, reduction of CAT and LPO activity and the highest GST activity (P < 0.05). The results of the present study suggest that FTB as a dietary supplement has benefits and can replace synthetic ATB, including supplementation with FTB for 20 days to provide greater antioxidant protection in Nile tilapia, mitigate the impacts of stressors and modulate immunity, providing to fish greater resistance and protection against diseases.


Subject(s)
Aeromonas hydrophila , Animal Feed/analysis , Cichlids , Diet/veterinary , Dietary Supplements , Fish Diseases/microbiology , Animal Nutritional Physiological Phenomena , Animals , Anti-Bacterial Agents/therapeutic use , Enrofloxacin/therapeutic use , Fish Diseases/prevention & control , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary , Lippia/chemistry , Phytotherapy , Plant Oils/administration & dosage , Plant Oils/pharmacology , Thymus Plant/chemistry
6.
Heliyon ; 6(12): e05716, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33364491

ABSTRACT

Intensive fish cultivation has a high incidence of infection, which is often controlled by administering antibiotics. Florfenicol (FF) is one of the two antimicrobial drugs permitted for aquaculture in Brazil. Due to their intensive use, potentially harmful effects on aquatic organisms are of great concern. In this sense, we investigated whether the presence of FF in cultivation water could change the health parameters of Nile tilapia. For this, we evaluated hemoglobin, hematocrit, mean corpuscular hemoglobin (MCHC) concentration, mean corpuscular volume (MCV), total plasma protein (TPP), number of circulating red blood cells and leukocytes, as lipid peroxidation levels, catalase activity and glutathione S-transferase activity of fish exposed to 11.72 mg L-1 of FF in water for 48 h. The fish were divided into two groups: Nile tilapia in water with FF or without FF (control). Exposure to FF in cultivation water for a short period didn't change the hematological variables analyzed, but caused changes in liver ROS (Reactive oxygen species) markers of the Nile tilapia, which was revealed by lipid peroxidation levels, catalase activity, and glutathione S-transferase. The 48h exposure period was enough to induce oxidative stress in hepatocytes, causing cellular oxidative damage. Therefore, the antibiotic florfenicol may cause toxicity to organisms and aquatic ecosystems, even at a sublethal concentrations near 1/100 LC50-48h for fish species.

7.
Fish Shellfish Immunol ; 105: 369-377, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32693158

ABSTRACT

Plants are a potential source of active molecules and are environmentally safer and cheaper than synthetic antibiotics. Bioactive compounds of Artemisia annua have shown pharmacological activities and are used globally as a supplement. The present study tested whether dietary supplementation with alcohol extract of the plant A. annua (ae-Aa; patent BR10201902707) improves the health status of juvenile Nile tilapia and increases resistance to diseases when fish are challenged with the bacteria Aeromonas hydrophila. The experimental design was completely randomized with four experimental groups (0.0, 0.1, 0.25, and 0.5% ae-Aa in the diets) with five repetitions (12 fish per repetition/experimental unit). We assessed serum glucose and cortisol levels in plasma, leukocyte respiratory activity, total plasma protein, serum lysozyme levels, as well as the number of circulating red blood cells and fish leukocytes at the end of the 30 days of feeding (phase I) and 24h after exposure to bacteria (phase II). The levels of lipid peroxidation, catalase activity and glutathione S-transferase of fish were also analyzed. The supplementation of 0.5% of ae-Aa was sufficient to increase the respiratory burst of leukocyte and lysozyme activity, total plasma protein, blood thrombocytes, neutrophils and monocytes after bacterial challenge (P < 0.05), and minimized stress response with decreases in plasmatic glucose and cortisol, and reduction in lipid peroxidation levels (P < 0.05). Results of the present study suggest that ae-Aa as a dietary supplement has benefits, including supplementation with 0.5% A. annua extract for 30 days to minimize the stress response and modulate innate immunity in Nile tilapia, providing fish with greater resistance and disease protection.


Subject(s)
Artemisia annua/chemistry , Cichlids/immunology , Fish Diseases/immunology , Immunity, Innate , Plant Extracts/metabolism , Aeromonas hydrophila/physiology , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Disease Resistance , Dose-Response Relationship, Drug , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Health Status , Immunity, Innate/drug effects , Plant Extracts/administration & dosage , Random Allocation
8.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 57(3): e169354, 2020. tab, graf
Article in English | VETINDEX, LILACS | ID: biblio-1122192

ABSTRACT

Trichlorfon (TRF) is a pesticide widely used in aquaculture to control fish ectoparasites. This pesticide is an inhibitor of acetylcholinesterase, an essential enzyme for termination of nerve impulses. High rates of TRF use generate risks to the environment and human health. In the environment, pesticides can affect the local fauna and generate an ecological breakdown. There are several studies performed with fish production; however, gaps are created for native fish with other commercial values. The tuvira (Gymnotus carapo) is a fish native to Brazilian fauna and has great commercial importance in sport fishing. The present study aimed to determine the lethal concentration of trichlorfon (Masoten) in Gymnotus carapo and its sublethal effects on the enzyme AChE. In this study, the acute toxicity (the concentrations to kill 50% of the fish LC50) of TRF in tuviras (Gymnotus carapo) and acetylcholinesterase inhibition in liver and muscle tissue of tuviras submitted to sublethal concentrations were evaluated. For the acute assay, concentrations of 0.0, 5.0, 7.5, 15, 22.5, 30, 37.5 and 45 mg L-1 were used for a period of 96 h. After the acute exposure period, a LC50 of 6.38 mg L-1 was determined. In the sublethal assay, concentrations of 0.0, 0.238, 0.438 and 0.638 mg L-1 were used, based on 10% of the LC50, over a period of 14 days. Two collections were performed: one at seven days and the other at the end (day 14). Inhibition of acetylcholinesterase in the liver was only shown (p < 0.05) for the treatment with 0.638 mg L-1 after 14 days of exposure. At seven days, muscle activity showed a significant difference only for the treatments 0.438 and 0.638 mg L-1, compared with the treatment 0.238 mg L-1 and control. At 14 days of exposure, only the treatment 0.638 mg L-1 showed significant differences in relation to the other groups, thus showing that enzyme recovery had occurred. The value found in the acute test allowed the conclusion that TRF presents moderately toxic characteristics to Gymnotus carapo. The toxicity parameter values calculated in the present study assisted in estimation of maximum allowable limits in bodies of water when combined with test data from other non-target organisms.(AU)


O triclorfon (TRC) é um pesticida muito utilizado na aquicultura para o controle de ectoparasitos de peixes. Este pesticida é um inibidor da acetilcolinesterase, uma enzima essencial para a finalização de impulsos nervosos. As altas concentrações utilizadas de TRC geram riscos ao meio ambiente e à saúde humana. No ambiente, os pesticidas podem afetar a fauna local e gerar um colapso ecológico. Existem vários estudos com peixes de produção, no entanto, há lacunas para peixes nativos com outros valores comerciais. A tuvira (Gymnotus carapo) é um peixe nativo da fauna brasileira e possui grande importância comercial na pesca esportiva. O presente trabalho, delineado para determinar a concentração letal de triclorfon (Masoten) em Gymnotus carapo e seus efeitos subletais na enzima AChE, avaliou a toxicidade aguda (concentrações para matar 50% dos peixes CL50) do TRC em tuviras (Gymnotus carapo) e a inibição da acetilcolinesterase no fígado e tecido muscular de tuviras. Para o ensaio agudo, foram utilizadas concentrações de 0,0, 5,0, 7,5, 15, 22,5, 30, 37,5 e 45 mg L-1por um período de 96 horas. Após o período de exposição aguda, foi determinado uma CL50 de 6,38 mg L-1. No ensaio subletal, foram utilizadas concentrações de 0,0, 0,238, 0,438 e 0,638 mg L-1, com base em 10% do CL50, durante um período de catorze dias. Foram realizadas duas colheitas: uma aos sete dias e a outra ao final (décimo quarto dia). A inibição da acetilcolinesterase no fígado foi demonstrada apenas (p <0,05) para o tratamento com 0,638 mg L-1 após catorze dias de exposição. Aos sete dias, a atividade muscular mostrou diferença significativa apenas para os tratamentos 0,438 e 0,638 mg L-1, em comparação com o tratamento 0,238 mg L-1 e controle. Aos catorze dias de exposição, apenas o tratamento 0,638 mg L-1 apresentou diferenças significativas em relação aos demais grupos, demonstrando a recuperação enzimática. O valor encontrado no teste agudo permitiu concluir que o TRC apresenta características moderadamente tóxicas para Gymnotus carapo. Os valores dos parâmetros de toxicidade calculados no presente estudo permitiram o estabelecimento da estimativa dos limites máximos permitidos em corpos d'água quando combinados com dados de testes de outros organismos não-alvo.(AU)


Subject(s)
Animals , Trichlorfon/toxicity , Cholinesterase Inhibitors/analysis , Gymnotiformes , Organophosphorus Compounds/toxicity , Pesticides , Environmental Biomarkers
9.
Fish Shellfish Immunol ; 73: 133-140, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29191795

ABSTRACT

We tested the efficacy of a commercial product (Glucan-MOS®) derived from yeast Saccharomyces cerevisiae, containing two combined products, ß-1,3-1,6 glucans and mannans on the growth, feed efficiency, stress and innate immune responses of juvenile pacu (Piaractus mesopotamicus) after a stressful handling and bacterial inoculation. For this, we evaluated the serum cortisol and plasma glucose levels, the respiratory activity of leukocytes, the serum lysozyme levels, as well as the number of circulating erythrocytes and leukocytes of fish fed during 30 days with diets containing increased levels of Glucan-MOS (0.0, 0.1, 0.2, 0.4 and 0.8%). The supplementation of 0.1% improved weight gain, feed conversion and the protein efficiency ratio compared to a control diet. The 0.2 and 0.4% Glucan-MOS® diets were sufficient to increase the respiratory burst of leukocytes and lysozyme activity, the number of thrombocytes, neutrophils and monocytes in the blood after a stressful handling and bacterial challenge, and minimized stress response as shown by decreased cortisol and glucose levels when compared to the control. The results of this work reinforce the benefits of the adoption of feeding strategies including combination of both ß-1,3-1,6 glucans and mannans as a dietary supplement in periods prior to intensive management. The 30-day period was sufficient to stimulate growth performance, improve nutrient utilization, minimize stress response and modulate innate immunity responses.


Subject(s)
Characiformes/physiology , Fish Diseases/immunology , Mannans/metabolism , Stress, Physiological/drug effects , beta-Glucans/metabolism , Aeromonas hydrophila/physiology , Animal Feed/analysis , Animals , Characiformes/blood , Characiformes/growth & development , Characiformes/immunology , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Gram-Negative Bacterial Infections/immunology , Mannans/administration & dosage , Random Allocation , beta-Glucans/administration & dosage
10.
Value Health ; 14(5 Suppl 1): S126-9, 2011.
Article in English | MEDLINE | ID: mdl-21839884

ABSTRACT

OBJECTIVES: Dyspepsia is defined as persistent or recurrent abdominal pain or discomfort centered in the upper abdomen. Dyspepsia represents up to 8.3% of all primary care physician visits and causes huge economic costs to patients and to the economy as a whole. The aim of this study was to measure the influence of dyspepsia on work productivity of people within the Brazilian workforce. METHODS: Adult patients were enrolled if they met the Roma III criteria for uninvestigated dyspepsia. All patients answered a demographic questionnaire. Productivity impairment was measured by the Work Productivity and Activity Impairment questionnaire. Subjects underwent upper gastrointestinal endoscopy and were classified as having functional or organic dyspepsia. The study protocol was approved by the Ethics Committee of Hospital de Clínicas de Porto Alegre, Brazil. RESULTS: Eight hundred fifty patients with dyspepsia were evaluated: 628 were women (73.9%); mean age was 46.4 ± 12.9 years; 387 (45.5%) were active workers. Among active workers, 32.2% mentioned that dyspepsia had caused absenteeism from work during the preceding week and 78% reported a reduction of the work productivity (presenteeism). The lost work productivity score was 35.7% among all employed patients. The affect on work productivity was similar between patients with functional or organic dyspepsia. CONCLUSIONS: Our study showed an important influence of dyspepsia on work productivity. We did not find any statistically significant difference on the influence on work between patients with organic dyspepsia and functional dyspepsia. The social impact of these findings is underscored by taking into account the prevalence (up to 40%) of this condition in Brazil.


Subject(s)
Absenteeism , Dyspepsia/economics , Efficiency , Employment/economics , Activities of Daily Living , Adult , Brazil/epidemiology , Cost of Illness , Double-Blind Method , Dyspepsia/diagnosis , Dyspepsia/epidemiology , Dyspepsia/etiology , Endoscopy, Gastrointestinal , Female , Gross Domestic Product , Humans , Logistic Models , Male , Middle Aged , Prevalence , Severity of Illness Index , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...