Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 834: 137845, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38821202

ABSTRACT

Sepsis-associated encephalopathy, which manifests in severe cognitive and depressive symptoms, is directly linked to neuroinflammation. Our study investigates the efficacy of 25H-NBOMe, a phenethylamine, in alleviating these symptoms, potentially offering an innovative treatment for post-sepsis depression. Wistar rats, weighing between 250-300 g, were subjected to cecal ligation and puncture (CLP) surgery to induce sepsis. Depressive-like behaviors were assessed using the forced swim test (FST) on either day 7 or 14 post-surgery, to establish the presence of depressive symptoms. The impact of 25H-NBOMe treatment was then evaluated, focusing on the head-twitch response (HTR), performance in the FST, and GFAP expression in the prefrontal cortex. Treatment with 25H-NBOMe resulted in significant behavioral changes, demonstrated by decreased immobility and increased swimming times in the FST, along with a rise in the HTR. These outcomes indicate a reduction in depressive-like symptoms post-sepsis and the psychoactive effects of the compound. Furthermore, a notable decrease in GFAP expression in the study highlights the compound's impact on mitigating sepsis-induced astrogliosis. This study demonstrates the effectiveness of 25H-NBOMe, a psychedelic in the phenethylamine class, in treating post-sepsis depression and reducing astrogliosis. However, the psychedelic nature of 25H-NBOMe calls for further investigation into similar compounds with less psychoactive impact, crucial for advancing treatment options for neuropsychiatric symptoms following sepsis.


Subject(s)
Depression , Rats, Wistar , Sepsis , Animals , Male , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/psychology , Depression/drug therapy , Depression/etiology , Rats , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Phenethylamines/pharmacology , Phenethylamines/therapeutic use , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism
2.
Cureus ; 16(1): e51631, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38318552

ABSTRACT

Artificial intelligence (AI) is the capability of a machine to execute cognitive processes that are typically considered to be functions of the human brain. It is the study of algorithms that enable machines to reason and perform mental tasks, including problem-solving, object and word recognition, and decision-making. Once considered science fiction, AI today is a fact and an increasingly prevalent subject in both academic and popular literature. It is expected to reshape medicine, benefiting both healthcare professionals and patients. Machine learning (ML) is a subset of AI that allows machines to learn and make predictions by recognizing patterns, thus empowering the medical team to deliver better care to patients through accurate diagnosis and treatment. ML is expanding its footprint in a variety of surgical specialties, including general surgery, ophthalmology, cardiothoracic surgery, and vascular surgery, to name a few. In recent years, we have seen AI make its way into the operating theatres. Though it has not yet been able to replace the surgeon, it has the potential to become a highly valuable surgical tool. Rest assured that the day is not far off when AI shall play a significant intraoperative role, a projection that is currently marred by safety concerns. This review aims to explore the present application of AI in various surgical disciplines and how it benefits both patients and physicians, as well as the current obstacles and limitations facing its seemingly unstoppable rise.

SELECTION OF CITATIONS
SEARCH DETAIL