Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 9554, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31266976

ABSTRACT

The Microbacterium sp. LEMMJ01 isolated from Antarctic soil does not belong to any of the nearest species identified in the RDP database. Under UV radiation (A, B and C wavebands) the survival fractions of Microbacterium sp. cells were much higher compared with wild-type E. coli K12A15. Especially remarkable for an Antarctic bacterium, an expressive resistance against high UV-B doses was observed. The increased survival of DNA repair-proficient E. coli grown overnight added of 0.1 mg/ml or 1 mg/ml of the whole pigment extract produced by Microbacterium sp. revealed that part of the resistance of Microbacterium sp. against UV-B radiation seems to be connected with photoprotection by its pigments. Scanning electron microscopy revealed that UV-A and UV-B ensued membrane alterations only in E. coli. The APCI-MS fingerprints revealed the diagnostic ions for neurosporene (m/z 580, 566, 522, 538, and 524) synergism for the first time in this bacterium by HPLC-MS/MS analysis. Carotenoids also were devoid of phototoxicity and cytotoxicity effects in mouse cells and in human keratinocytes and fibroblasts.


Subject(s)
Actinobacteria/chemistry , Actinobacteria/radiation effects , Carotenoids/chemistry , Radiation Tolerance , Ultraviolet Rays , Actinobacteria/classification , Actinobacteria/genetics , Antarctic Regions , Carotenoids/pharmacology , Chromatography, High Pressure Liquid , Dose-Response Relationship, Radiation , Escherichia coli/genetics , Escherichia coli/radiation effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Microbial Viability , Phylogeny , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry
2.
Photochem Photobiol ; 95(2): 618-626, 2019 03.
Article in English | MEDLINE | ID: mdl-30103257

ABSTRACT

Rational use of water is a major challenge for governments and global organizations, with easy and inexpensive interventions being sought by communities that are not supplied with drinking water. In this context, solar disinfection (SODIS) has shown great efficiency for water disinfection. To speed up the process and improve inactivation, we studied the effects of methylene blue (MB) as a photodynamic agent because of its ability to absorb visible light (red wavelength) and generate singlet oxygen as a reactive species, thereby inactivating bacteria and viruses present in water. In this study, samples of clean mineral water were artificially contaminated with Gram-positive (Staphylococcus epidermidis or Deinococcus radiodurans) or with Gram-negative strains (Escherichia coli or Salmonella typhimurium) and exposed to traditional SODIS or to MB-SODIS. A lethal synergistic effect was observed when cultures were illuminated in the presence of MB. The obtained results indicate that bacterial inactivation can be achieved in a much shorter time when using MB associated with SODIS treatment. Therefore, this technique was able to provide safe water for consumption through the inactivation of microorganisms in general, including pathogens and some strains resistant to the traditional SODIS procedure, thus allowing its use in areas usually less exposed to sunlight.

SELECTION OF CITATIONS
SEARCH DETAIL
...