Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 54(3): 1533-1545, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37610567

ABSTRACT

N-Acetyl-glucosaminidases (GlcNAcases) are exoenzymes found in a wide range of living organisms, which have gained great attention in the treatment of disorders related to diabetes, Alzheimer's, Tay-Sachs', and Sandhoff's diseases; the control of phytopathogens; and the synthesis of bioactive GlcNAc-containing products. Aiming at future industrial applications, in this study, GlcNAcase production by marine Aeromonas caviae CHZ306 was enhanced first in shake flasks in terms of medium composition and then in bench-scale stirred-tank bioreactor in terms of physicochemical conditions. Stoichiometric balance between the bioavailability of carbon and nitrogen in the formulated culture medium, as well as the use of additional carbon and nitrogen sources, played a central role in improving the bioprocess, considerably increasing the enzyme productivity. The optimal cultivation medium was composed of colloidal α-chitin, corn steep liquor, peptone A, and mineral salts, in a 5.2 C:N ratio. Optimization of pH, temperature, colloidal α-chitin concentration, and kLa conditions further increased GlcNAcase productivity. Under optimized conditions in bioreactor (i.e., 34 °C, pH 8 and kLa 55.2 h-1), GlcNAcase activity achieved 173.4 U.L-1 after 12 h of cultivation, and productivity no less than 14.45 U.L-1.h-1 corresponding to a 370-fold enhancement compared to basal conditions.


Subject(s)
Aeromonas caviae , Aeromonas caviae/genetics , Bioreactors , Carbon , Chitin , Hexosaminidases , Nitrogen
2.
World J Microbiol Biotechnol ; 35(8): 114, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31332537

ABSTRACT

N-acetyl-D-glucosamine (GlcNAc) is an important amino-monosaccharide with great potential for biotechnological applications. It has traditionally been produced by the chemical hydrolysis of chitin, despite certain industrial and environmental drawbacks, including acidic wastes, low yields and high costs. Therefore, enzymatic production has gained attention as a promising environmentally-friendly alternative to the chemical processes. In this study we demonstrate the GlcNAc bioproduction from colloidal α-chitin using an enzyme cocktail containing endochitinases and exochitinases (chitobiosidases and N-acetyl-glucosaminidases). The enzyme cocktail was extracted after fermentation in a bioreactor by Aeromonas caviae CHZ306, a chitinolytic marine bacterium with great potential for chitinase production. Hydrolysis parameters were studied in terms of temperature, pH, enzyme and substrate concentration, and reaction time, achieving over 90% GlcNAc yield within 6 h. The use of colloidal α-chitin as substrate showed a substantial improvement of GlcNAc yields, when compared with ß-chitin and α-chitin polymorphs. Such result is directly related to a significant decrease in crystallinity and viscosity from natural α-chitin, providing the chitinase with greater accessibility to the depolymerized chains. This study provides valuable information on the GlcNAc bioproduction from chitin using an enzymatic approach, addressing the key points for its production, including the enzyme cocktail composition and the substrate structures.


Subject(s)
Acetylglucosamine/biosynthesis , Aeromonas caviae/enzymology , Chitin/metabolism , Chitinases/metabolism , Culture Media/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Magnetic Resonance Spectroscopy , Molecular Weight , Temperature , Viscosity , X-Ray Diffraction
3.
World J Microbiol Biotechnol ; 33(11): 201, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29080074

ABSTRACT

N-Acetyl-D-glucosamine (GlcNAc) is a monosaccharide with great application potential in the food, cosmetic, pharmaceutical, and biomaterial areas. GlcNAc is currently produced by chemical hydrolysis of chitin, but the current processes are environmentally unfriendly, have low yield and high cost. This study demonstrates the potential to produce GlcNAc from α-chitin using chitinases of ten marine-derived Aeromonas isolates as a sustainable alternative to the current chemical process. The isolates were characterized as Aeromonas caviae by multilocus sequence analysis (MLSA) using six housekeeping genes (gltA, groL, gyrB, metG, ppsA, and recA), not presented the virulence genes verified (alt, act, ast, ahh1, aer, aerA, hlyA, ascV and ascFG), but showed hemolytic activity on blood agar. GlcNAc was produced at 37 °C, pH 5.0, 2% (w/v) colloidal chitin and crude chitinase extracts (0.5 U mL-1) by all the isolates with yields from 14 to 85% at 6 h, 17-89% at 12 h and 19-93% after 24 h. The highest yield of GlcNAc was observed by A. caviae CH129 (93%). This study demonstrates one of the most efficient chitin enzymatic hydrolysis procedures and A. caviae isolates with great potential for chitinases expression and GlcNAc production.


Subject(s)
Acetylglucosamine/biosynthesis , Aeromonas caviae/isolation & purification , Chitin/metabolism , Chitinases/metabolism , Aeromonas caviae/enzymology , Aeromonas caviae/metabolism , Animals , Bacterial Proteins/metabolism , Seawater/microbiology , Zooplankton/microbiology
4.
Genome Announc ; 4(6)2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27908996

ABSTRACT

We report here the draft genome sequence of Aeromonas caviae CH129, a marine-derived bacterium isolated from the coast of São Paulo state, Brazil. Genomic analysis revealed genes encoding enzymes involved in binding, transport, and chitin metabolism and different virulence-associated factors.

5.
Genome Announc ; 4(6)2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27856589

ABSTRACT

We report here a draft genome sequence of Aeromonas caviae CHZ306, a marine-derived bacterium with the ability to hydrolyze chitin and express high levels of chitinases. The assembly resulted in 65 scaffolds with approximately 4.78 Mb. Genomic analysis revealed different genes encoding chitin-degrading enzymes that can be used for chitin derivative production.

SELECTION OF CITATIONS
SEARCH DETAIL
...