Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916118

ABSTRACT

The identification of biomarker-driven targeted therapies for patients with triple negative breast cancer (TNBC) remains a major clinical challenge, due to a lack of specific targets. Here, we show that cyclin E, a major regulator of G1 to S transition, is deregulated in TNBC and is associated with mutations in DNA repair genes (e.g., BRCA1/2). Breast cancers with high levels of cyclin E not only have a higher prevalence of BRCA1/2 mutations, but also are associated with the worst outcomes. Using several in vitro and in vivo model systems, we show that TNBCs that harbor either mutations in BRCA1/2 or overexpression of cyclin E are very sensitive to the growth inhibitory effects of AZD-1775 (Wee 1 kinase inhibitor) when used in combination with MK-4837 (PARP inhibitor). Combination treatment of TNBC cell lines with these two agents results in synergistic cell killing due to induction of replicative stress, downregulation of DNA repair and cytokinesis failure that results in increased apoptosis. These findings highlight the potential clinical application of using cyclin E and BRCA mutations as biomarkers to select only those patients with the highest replicative stress properties that may benefit from combination treatment with Wee 1 kinase and PARP inhibitors.

2.
Clin Cancer Res ; 25(13): 3996-4013, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30867218

ABSTRACT

PURPOSE: Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are currently used in combination with endocrine therapy to treat advanced hormone receptor-positive, HER2-negative breast cancer. Although this treatment doubles time to progression compared with endocrine therapy alone, about 25%-35% of patients do not respond, and almost all patients eventually acquire resistance. Discerning the mechanisms of resistance to CDK4/6 inhibition is crucial in devising alternative treatment strategies. EXPERIMENTAL DESIGN: Palbociclib-resistant cells (MCF-7 and T47D) were generated in a step-wise dose-escalading fashion. Whole-exome sequencing, genome-wide expression analysis, and proteomic analysis were performed in both resistant and parental (sensitive) cells. Pathway alteration was assessed mechanistically and pharmacologically. Biomarkers of altered pathways were examined in tumor samples from patients with palbociclib-treated breast cancer whose disease progressed while on treatment. RESULTS: Palbociclib-resistant cells are cross-resistant to other CDK4/6 inhibitors and are also resistant to endocrine therapy (estrogen receptor downregulation). IL6/STAT3 pathway is induced, whereas DNA repair and estrogen receptor pathways are downregulated in the resistant cells. Combined inhibition of STAT3 and PARP significantly increased cell death in the resistant cells. Matched tumor samples from patients with breast cancer who progressed on palbociclib were examined for deregulation of estrogen receptor, DNA repair, and IL6/STAT3 signaling, and results revealed that these pathways are all altered as compared with the pretreatment tumor samples. CONCLUSIONS: Palbociclib resistance induces endocrine resistance, estrogen receptor downregulation, and alteration of IL6/STAT3 and DNA damage response pathways in cell lines and patient samples. Targeting IL6/STAT3 activity and DNA repair deficiency using a specific STAT3 inhibitor combined with a PARP inhibitor could effectively treat acquired resistance to palbociclib.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , DNA Repair/drug effects , Drug Resistance, Neoplasm , Receptors, Estrogen/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/pathology , Cell Line, Tumor , Computational Biology/methods , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Piperazines/pharmacology , Piperazines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyridines/therapeutic use , Treatment Outcome
3.
Clin Cancer Res ; 24(24): 6594-6610, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30181387

ABSTRACT

PURPOSE: Poor prognosis in triple-negative breast cancer (TNBC) is due to an aggressive phenotype and lack of biomarker-driven targeted therapies. Overexpression of cyclin E and phosphorylated-CDK2 are correlated with poor survival in patients with TNBC, and the absence of CDK2 desensitizes cells to inhibition of Wee1 kinase, a key cell-cycle regulator. We hypothesize that cyclin E expression can predict response to therapies, which include the Wee1 kinase inhibitor, AZD1775. EXPERIMENTAL DESIGN: Mono- and combination therapies with AZD1775 were evaluated in TNBC cell lines and multiple patient-derived xenograft (PDX) models with different cyclin E expression profiles. The mechanism(s) of cyclin E-mediated replicative stress were investigated following cyclin E induction or CRISPR/Cas9 knockout by a number of assays in multiple cell lines. RESULTS: Cyclin E overexpression (i) is enriched in TNBCs with high recurrence rates, (ii) sensitizes TNBC cell lines and PDX models to AZD1775, (iii) leads to CDK2-dependent activation of DNA replication stress pathways, and (iv) increases Wee1 kinase activity. Moreover, treatment of cells with either CDK2 inhibitors or carboplatin leads to transient transcriptional induction of cyclin E (in cyclin E-low tumors) and result in DNA replicative stress. Such drug-mediated cyclin E induction in TNBC cells and PDX models sensitizes them to AZD1775 in a sequential treatment combination strategy.Conclusions: Cyclin E is a potential biomarker of response (i) for AZD1775 as monotherapy in cyclin E-high TNBC tumors and (ii) for sequential combination therapy with CDK2 inhibitor or carboplatin followed by AZD1775 in cyclin E-low TNBC tumors.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Cyclin E/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression , Nuclear Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Triple Negative Breast Neoplasms/genetics , Animals , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Cyclic N-Oxides , DNA Repair , DNA Replication , Disease Models, Animal , Humans , Indolizines , Mice , Mice, Knockout , Models, Biological , Prognosis , Pyrazoles/pharmacology , Pyridinium Compounds/pharmacology , Pyrimidinones/pharmacology , Stress, Physiological , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
4.
Cancer Res ; 78(19): 5481-5491, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30194068

ABSTRACT

Cyclin E, a regulatory subunit of cyclin-dependent kinase 2 (CDK2), is central to the initiation of DNA replication at the G1/S checkpoint. Tight temporal control of cyclin E is essential to the coordination of cell-cycle processes and the maintenance of genome integrity. Overexpression of cyclin E in human tumors was first observed in the 1990s and led to the identification of oncogenic roles for deregulated cyclin E in experimental models. A decade later, low-molecular-weight cyclin E (LMW-E) isoforms were observed in aggressive tumor subtypes. Compared with full-length cyclin E, LMW-E hyperactivates CDK2 through increased complex stability and resistance to the endogenous inhibitors p21CIP1 and p27KIP1 LMW-E is predominantly generated by neutrophil elastase-mediated proteolytic cleavage, which eliminates the N-terminal cyclin E nuclear localization signal and promotes cyclin E's accumulation in the cytoplasm. Compared with full-length cyclin E, the aberrant localization and unique stereochemistry of LMW-E dramatically alters the substrate specificity and selectivity of CDK2, increasing tumorigenicity in experimental models. Cytoplasmic LMW-E, which can be assessed by IHC, is prognostic of poor survival and predicts resistance to standard therapies in patients with cancer. These patients may benefit from therapeutic modalities targeting the altered biochemistry of LMW-E or its associated vulnerabilities. Cancer Res; 78(19); 5481-91. ©2018 AACR.


Subject(s)
Cyclin E/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/therapy , Oncogene Proteins/metabolism , Animals , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Carcinogenesis , Cell Cycle , Cell Division , Cell Line, Tumor , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cytoplasm/metabolism , Female , Humans , Leukocyte Elastase/metabolism , Molecular Weight , Neoplasm Metastasis , Neoplasms/metabolism , Neoplasms/pathology , Oncogenes , Prognosis , Treatment Outcome
5.
Oncoscience ; 5(5-6): 137-139, 2018 May.
Article in English | MEDLINE | ID: mdl-30035166
6.
Cancer Res ; 78(3): 742-757, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29180466

ABSTRACT

PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients. Several of those patients exhibit intrinsic/acquired resistance mechanisms that limit efficacy of PARPi monotherapy. Here we show how the efficacy of PARPi in triple-negative breast cancers (TNBC) can be expanded by targeting MYC-induced oncogenic addiction. In BRCA-mutant/sporadic TNBC patients, amplification of the MYC gene is correlated with increased expression of the homologous DNA recombination enzyme RAD51 and tumors overexpressing both genes are associated with worse overall survival. Combining MYC blockade with PARPi yielded synthetic lethality in MYC-driven TNBC cells. Using the cyclin-dependent kinase inhibitor dinaciclib, which downregulates MYC expression, we found that combination with the PARPi niraparib increased DNA damage and downregulated homologous recombination, leading to subsequent downregulation of the epithelial-mesenchymal transition and cancer stem-like cell phenotypes. Notably, dinaciclib resensitized TBNC cells, which had acquired resistance to niraparib. We found that the synthetic lethal strategy employing dinaciclib and niraparib was also highly efficacious in ovarian, prostate, pancreatic, colon, and lung cancer cells. Taken together, our results show how blunting MYC oncogene addiction can leverage cancer cell sensitivity to PARPi, facilitating the clinical use of c-myc as a predictive biomarker for this treatment.Significance: Dual targeting of MYC-regulated homologous recombination and PARP-mediated DNA repair yields potent synthetic lethality in triple-negative breast tumors and other aggressive tumors characterized by MYC overexpression. Cancer Res; 78(3); 742-57. ©2017 AACR.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Resistance, Neoplasm/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Pyridinium Compounds/pharmacology , Synthetic Lethal Mutations , Triple Negative Breast Neoplasms/drug therapy , Animals , Apoptosis , Cell Proliferation , Cyclic N-Oxides , DNA Damage , DNA Repair , Drug Therapy, Combination , Female , Humans , Indolizines , Mice , Mice, Nude , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Oncotarget ; 8(9): 14897-14911, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28107181

ABSTRACT

Inflammatory breast cancer (IBC) is a virulent form of breast cancer, and novel treatment strategies are urgently needed. Immunohistochemical analysis of tumors from women with a clinical diagnosis of IBC (n = 147) and those with non-IBC breast cancer (n = 2510) revealed that, whereas in non-IBC cases cytoplasmic cyclin E was highly correlated with poor prognosis (P < 0.001), in IBC cases both nuclear and cytoplasmic cyclin E were indicative of poor prognosis. These results underscored the utility of the cyclin E/CDK2 complex as a novel target for treatment. Because IBC cell lines were highly sensitive to the CDK2 inhibitors dinaciclib and meriolin 5, we developed a high-throughput survival assay (HTSA) to design novel sequential combination strategies based on the presence of cyclin E and CDK2. Using a 14-cell-line panel, we found that dinaciclib potentiated the activity of DNA-damaging chemotherapies treated in a sequence of dinaciclib followed by chemotherapy, whereas this was not true for paclitaxel. We also identified a signature of DNA repair-related genes that are downregulated by dinaciclib, suggesting that global DNA repair is inhibited and that prolonged DNA damage leads to apoptosis. Taken together, our findings argue that CDK2-targeted combinations may be viable strategies in IBC worthy of future clinical investigation.


Subject(s)
Biomarkers, Tumor/metabolism , Cyclin E/metabolism , Cyclin-Dependent Kinase 2/metabolism , Gene Expression Regulation, Neoplastic , Inflammatory Breast Neoplasms/pathology , Oncogene Proteins/metabolism , Adult , Aged , Aged, 80 and over , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Cycle , Cell Proliferation , Combined Modality Therapy , Cyclic N-Oxides , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Female , Follow-Up Studies , Humans , Indolizines , Inflammatory Breast Neoplasms/metabolism , Inflammatory Breast Neoplasms/therapy , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Staging , Prognosis , Pyridinium Compounds/therapeutic use , Survival Rate , Tumor Cells, Cultured , Young Adult
8.
BMC Cancer ; 9: 173, 2009 Jun 07.
Article in English | MEDLINE | ID: mdl-19500415

ABSTRACT

BACKGROUND: Inhibitor of differentiation 4 (Id4), a member of the Id gene family is also a dominant negative regulator of basic helix loop helix (bHLH) transcription factors. Some of the functions of Id4 appear to be unique as compared to its other family members Id1, Id2 and Id3. Loss of Id4 gene expression in many cancers in association with promoter hypermethylation has led to the proposal that Id4 may act as a tumor suppressor. In this study we provide functional evidence that Id4 indeed acts as a tumor suppressor and is part of a cancer associated epigenetic re-programming. METHODS: Data mining was used to demonstrate Id4 expression in prostate cancer. Methylation specific polymerase chain reaction (MSP) analysis was performed to understand molecular mechanisms associated with Id4 expression in prostate cancer cell lines. The effect of ectopic Id4 expression in DU145 cells was determined by cell cycle analysis (3H thymidine incorporation and FACS), expression of androgen receptor, p53 and cyclin dependent kinase inhibitors p27 and p21 by a combination of RT-PCR, real time-PCR, western blot and immuno-cytochemical analysis. RESULTS: Id4 expression was down-regulated in prostate cancer. Id4 expression was also down-regulated in prostate cancer line DU145 due to promoter hyper-methylation. Ectopic Id4 expression in DU145 prostate cancer cell line led to increased apoptosis and decreased cell proliferation due in part by an S-phase arrest. In addition to S-phase arrest, ectopic Id4 expression in PC3 cells also resulted in prolonged G2/M phase. At the molecular level these changes were associated with increased androgen receptor (AR), p21, p27 and p53 expression in DU145 cells. CONCLUSION: The results suggest that Id4 acts directly as a tumor suppressor by influencing a hierarchy of cellular processes at multiple levels that leads to a decreased cell proliferation and change in morphology that is possibly mediated through induction of previously silenced tumor suppressors.


Subject(s)
Genes, Tumor Suppressor , Inhibitor of Differentiation Proteins/biosynthesis , Prostatic Neoplasms/metabolism , Apoptosis/genetics , Cell Cycle/genetics , Cell Growth Processes/genetics , Cell Line, Tumor , DNA Methylation , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Inhibitor of Differentiation Proteins/genetics , Male , Promoter Regions, Genetic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Transfection
9.
Prostate ; 67(13): 1411-20, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17639499

ABSTRACT

BACKGROUND: The inhibitor of differentiation (Id) proteins are expressed in prostate cancer (PCA). However, there is a general lack of Id isoform-specific downstream effectors. METHODS: Id1, Id2, or Id3 were silenced in PCA cell lines LNCaP, DU145, and PC3 using gene-specific small interfering RNA (siRNA). The effect of Id gene silencing on representative genes involved in apoptosis (p53, SNAIL2), proliferation (p21, p16), and tumor invasion (E-cadherin and MMP9) was investigated by real-time PCR. Expression of E-proteins, the primary Id interaction partners was also evaluated to understand the molecular mechanism of action. RESULTS: The Id proteins regulated the expression of CDKNIs p16 and p21 even in the absence of E-proteins. Loss of Id1 and Id3 up- or downregulated E-cadherin expression in E-protein negative or positive PCA cell lines, respectively. The effect of Id genes on cell proliferation was also independent of CDKNIs in p16 and p21 null PC3 cells. The p53-independent anti-apoptotic effect of Id2 was mediated in part by transcriptional repressor SNAI2. MMP9 seems to be the common target of all three Id genes (Id1, Id2, and Id3). CONCLUSIONS: The overall effect of Id proteins on proliferation and apoptosis is independent of E-proteins. E-proteins can however determine the magnitude of response or in some cases even reverse the Id-mediated target gene expression. Evaluating E-protein expression in conjunction with Id proteins will allow better understanding of the molecular mechanism of action of Id proteins and increase their prognostic significance in PCA.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Inhibitor of Differentiation Proteins/genetics , Prostatic Neoplasms/genetics , Apoptosis/genetics , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/metabolism , Blotting, Western , Cell Growth Processes/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/biosynthesis , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Cyclin-Dependent Kinase Inhibitor p21/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Inhibitor of Differentiation Proteins/biosynthesis , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Isoforms , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Reverse Transcriptase Polymerase Chain Reaction , Snail Family Transcription Factors , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transfection , Tumor Suppressor Protein p53/biosynthesis , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...