Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
NPJ Vaccines ; 9(1): 136, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097573

ABSTRACT

Avian influenza poses a severe threat to poultry production and global food security, prompting the development of vaccination programs in numerous countries. Modified live virus (MLV) vaccines, with their potential for mass application, offer a distinct advantage over existing options. However, concerns surrounding reversion, recombination, and unintended transmission have hindered the progress of MLV development for avian influenza in poultry. To address these concerns, we engineered reassortment-impaired, non-transmissible, safe, immunogenic, and protective MLVs through the rearrangement of internal gene segments and additional modifications to the surface gene segments HA and NA. The unique peptide marker aspartic acid-arginine-proline-alanine-valine-isoleucine-alanine-asparragine (DRPAVIAN) was incorporated into HA, while NA was modified to encode the chicken interleukin-18 (ckIL18) gene (MLV-H9N2-IL). In vitro, the MLV-H9N2 and MLV-H9N2-IL candidates demonstrated stability and virus titers comparable to the wild-type H9N2 strain. In chickens, the MLV-H9N2 and MLV-H9N2-IL candidates did not transmit via direct contact. Co-infection studies with wild-type virus confirmed that the altered HA and NA segments exhibited fitness disadvantages and did not reassort. Vaccinated chickens showed no clinical signs upon vaccination, all seroconverted, and the inclusion of ckIL18 in the MLV-H9N2-IL vaccine enhanced neutralizing antibody production. A significant decrease in viral loads post-challenge underscored the protective effect of the MLVs. The MLV-H9N2-IL vaccine, administered via drinking water, proved immunogenic in chickens in a dose-dependent manner, generating protective levels of neutralizing antibodies upon aggressive homologous virus challenge. In summary, this study lays the groundwork for safe MLVs against avian influenza suitable for mass vaccination efforts.

2.
Hum Vaccin Immunother ; 20(1): 2347019, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38807261

ABSTRACT

Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.


Subject(s)
Birds , Influenza Vaccines , Influenza in Birds , Influenza, Human , Pandemics , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Humans , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza in Birds/prevention & control , Influenza in Birds/epidemiology , Pandemics/prevention & control , Vaccine Development , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Clinical Trials as Topic , Disease Models, Animal , Vaccination , Pandemic Preparedness
3.
Proc Natl Acad Sci U S A ; 120(17): e2208718120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068231

ABSTRACT

The hemagglutinin (HA) stem region is a major target of universal influenza vaccine efforts owing to the presence of highly conserved epitopes across multiple influenza A virus (IAV) strains and subtypes. To explore the potential impact of vaccine-induced immunity targeting the HA stem, we examined the fitness effects of viral escape from stem-binding broadly neutralizing antibodies (stem-bnAbs). Recombinant viruses containing each individual antibody escape substitution showed diminished replication compared to wild-type virus, indicating that stem-bnAb escape incurred fitness costs. A second-site mutation in the HA head domain (N129D; H1 numbering) reduced the fitness effects observed in primary cell cultures and likely enabled the selection of escape mutations. Functionally, this putative permissive mutation increased HA avidity for its receptor. These results suggest a mechanism of epistasis in IAV, wherein modulating the efficiency of attachment eases evolutionary constraints imposed by the requirement for membrane fusion. Taken together, the data indicate that viral escape from stem-bnAbs is costly but highlights the potential for epistatic interactions to enable evolution within the functionally constrained HA stem domain.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies/genetics , Epistasis, Genetic , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines/genetics , Hemagglutinins , Influenza, Human/genetics , Influenza, Human/prevention & control
4.
FEBS Open Bio ; 12(6): 1142-1165, 2022 06.
Article in English | MEDLINE | ID: mdl-35451200

ABSTRACT

Influenza A and B viruses are among the most prominent human respiratory pathogens. About 3-5 million severe cases of influenza are associated with 300 000-650 000 deaths per year globally. Antivirals effective at reducing morbidity and mortality are part of the first line of defense against influenza. FDA-approved antiviral drugs currently include adamantanes (rimantadine and amantadine), neuraminidase inhibitors (NAI; peramivir, zanamivir, and oseltamivir), and the PA endonuclease inhibitor (baloxavir). Mutations associated with antiviral resistance are common and highlight the need for further improvement and development of novel anti-influenza drugs. A summary is provided for the current knowledge of the approved influenza antivirals and antivirals strategies under evaluation in clinical trials. Preclinical evaluations of novel compounds effective against influenza in different animal models are also discussed.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Animals , Antiviral Agents/pharmacology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/drug therapy , Models, Animal , Oseltamivir/pharmacology , Oseltamivir/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL