Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 10(3): 938-950, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38329933

ABSTRACT

The search for new anti-infectives based on metal complexes is gaining momentum. Among the different options taken by researchers, the one involving the use of organometallic complexes is probably the most successful one with a compound, namely, ferroquine, already in clinical trials against malaria. In this study, we describe the preparation and in-depth characterization of 10 new (organometallic) derivatives of the approved antifungal drug fluconazole. Our rationale is that the sterol 14α-demethylase is an enzyme part of the ergosterol biosynthesis route in Trypanosoma and is similar to the one in pathogenic fungi. To demonstrate our postulate, docking experiments to assess the binding of our compounds with the enzyme were also performed. Our compounds were then tested on a range of fungal strains and parasitic organisms, including the protozoan parasite Trypanosoma cruzi (T. cruzi) responsible for Chagas disease, an endemic disease in Latin America that ranks among some of the most prevalent parasitic diseases worldwide. Of high interest, the two most potent compounds of the study on T. cruzi that contain a ferrocene or cobaltocenium were found to be harmless for an invertebrate animal model, namely, Caenorhabditis elegans (C. elegans), without affecting motility, viability, or development.


Subject(s)
Fluconazole , Trypanosoma cruzi , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Metallocenes , Antiparasitic Agents/pharmacology , Caenorhabditis elegans , 14-alpha Demethylase Inhibitors/chemistry , Trypanosoma cruzi/chemistry
2.
Eur J Med Chem ; 265: 116098, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38171148

ABSTRACT

Overexpression of the chromosome 21 DYRK1A gene induces morphological defects and cognitive impairments in individuals with Down syndrome (DS) and in DS mice models. Aging neurons of specific brain regions of patients with Alzheimer's disease, DS and Pick's disease have increased DYRK1A immunoreactivity suggesting a possible association of DYRK1A with neurofibrillary tangle pathology. Epigallocatechin-3-gallate (EGCG) displays appreciable inhibition of DYRK1A activity and, contrary to all other published inhibitors, EGCG is a non-competitive inhibitor of DYRK1A. Prenatal exposure to green tea polyphenols containing EGCG protects from brain defects induced by overexpression of DYRK1A. In order to produce more robust and possibly more active analogues of the natural compound EGCG, here we synthetized new EGCG-like molecules with several structural modifications to the EGCG skeleton. We replaced the ester boun of EGCG with a more resistant amide bond. We also replaced the oxygen ring by a methylene group. And finally, we positioned a nitrogen atom within this ring. The selected compound was shown to maintain the non-competitive property of EGCG and to correct biochemical and behavioral defects present in a DS mouse model. In addition it showed high stability and specificity.


Subject(s)
Catechin/analogs & derivatives , Down Syndrome , Humans , Female , Pregnancy , Mice , Animals , Down Syndrome/drug therapy , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Mice, Transgenic , Cognition
3.
J Med Chem ; 66(23): 15867-15882, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38009931

ABSTRACT

Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens, including fungal infections. Herein, we show that the simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from that of the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and neglected tropical diseases (NTDs) targeted for elimination by 2030.


Subject(s)
Antifungal Agents , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Neglected Diseases/drug therapy , Fluconazole , Mycoses/drug therapy
4.
Bioconjug Chem ; 34(12): 2337-2344, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37948301

ABSTRACT

Ferroptosis is an iron-dependent lipid-peroxidation-driven mechanism of cell death and a promising therapeutic target to eradicate cancer cells. In this study, we discovered that boronic acid-derived salicylidenehydrazone (BASHY) dyes are highly efficient singlet-oxygen photosensitizers (PSs; ΦΔ up to 0.8) that induce ferroptosis triggered by photodynamic therapy. The best-performing BASHY dye displayed a high phototoxicity against the human glioblastoma multiform U87 cell line, with an IC50 value in the low nanomolar range (4.40 nM) and a remarkable phototoxicity index (PI > 22,700). Importantly, BASHY dyes were shown to accumulate in lipid droplets (LDs) and this intracellular partition was found to be essential for the enhanced phototoxicity and the induction of ferroptosis through lipid peroxidation. The safety and phototoxicity of this platform were validated using an in vivo zebrafish model (Danio rerio).


Subject(s)
Ferroptosis , Photosensitizing Agents , Animals , Humans , Photosensitizing Agents/pharmacology , Coloring Agents , Lipid Peroxidation , Lipid Droplets , Zebrafish
5.
Chem Sci ; 14(42): 11749-11760, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37920359

ABSTRACT

Photodynamic therapy (PDT) is a medical technique for the treatment of cancer. It is based on the use of non-toxic molecules, called photosensitizers (PSs), that become toxic when irradiated with light and produce reactive oxygen specious (ROS) such as singlet oxygen (1O2). This light-induced toxicity is rather selective since the physician only targets a specific area of the body, leading to minimal side effects. Yet, a strategy to improve further the selectivity of this medical technique is to confine the delivery of the PS to cancer cells only instead of spreading it randomly throughout the body prior to light irradiation. To address this problem, we present here novel sulfonamide-based monopodal and dipodal ruthenium and osmium polypyridyl complexes capable of targeting carbonic anhydrases (CAs) that are a major target in cancer therapy. CAs are overexpressed in the membrane or cytoplasm of various cancer cells. We therefore anticipated that the accumulation of our complexes in or outside the cell prior to irradiation would improve the selectivity of the PDT treatment. We show that our complexes have a high affinity for CAs, accumulate in cancer cells overexpressing CA cells and importantly kill cancer cells under both normoxic and hypoxic conditions upon irradiation at 540 nm. More importantly, Os(ii) compounds still exhibit some phototoxicity under 740 nm irradiation under normoxic conditions. To our knowledge, this is the first description of ruthenium/osmium-based PDT PSs that are CA inhibitors for the selective treatment of cancers.

6.
Chembiochem ; 24(23): e202300496, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37752096

ABSTRACT

The cell redox balance can be disrupted by the oxidation of biological peptides, eventually leading to cell death, which provides opportunities to develop cytotoxic drugs. With the aim of developing compounds capable of specifically inducing fatal redox reactions upon light irradiation, we have developed a library of copper compounds. This metal is abundant and considered essential for human health, making it particularly attractive for the development of new anticancer drugs. Copper(I) clusters with thiol ligands (including 5 novel ones) have been synthesized and characterized. Structures were elucidated by X-ray diffraction and showed that the compounds are oligomeric clusters. The clusters display high photooxidation capacity towards cysteine - an essential amino acid - upon light irradiation in the visible range (450 nm), while remaining completely inactive in the dark. This photoredox activity against a biological thiol is very encouraging for the development of anticancer photoredox drugs.The in vitro assay on murine colorectal cancer cells (CT26) did not show any toxicity - whether in the dark or when exposed to 450 nm light, likely because of the poor solubility of the complexes in biological medium.


Subject(s)
Antineoplastic Agents , Sulfhydryl Compounds , Humans , Animals , Mice , Sulfhydryl Compounds/chemistry , Copper/chemistry , Oxidation-Reduction , Cysteine/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
7.
Inorg Chem ; 62(38): 15510-15526, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37708255

ABSTRACT

Maleimide-containing prodrugs can quickly and selectively react with circulating serum albumin following their injection in the bloodstream. The drug-albumin complex then benefits from longer blood circulation times and better tumor accumulation. Herein, we have applied this strategy to a previously reported highly phototoxic Ru polypyridyl complex-based photosensitizer to increase its accumulation at the tumor, reduce off-target cytotoxicity, and therefore improve its pharmacological profile. Specifically, two complexes were synthesized bearing a maleimide group: one complex with the maleimide directly incorporated into the bipyridyl ligand, and the other has a hydrophilic linker between the ligand and the maleimide group. Their interaction with albumin was studied in-depth, revealing their ability to efficiently bind both covalently and noncovalently to the plasma protein. A crucial finding is that the maleimide-functionalized complexes exhibited significantly lower cytotoxicity in noncancerous cells under dark conditions compared to the nonfunctionalized complex, which is a highly desirable property for a photosensitizer. The binding to albumin also led to a decrease in the phototoxicity of the Ru bioconjugates in comparison to the nonfunctionalized complex, probably due to a decreased cellular uptake. Unfortunately, this decrease in phototoxicity was not compensated by a dramatic increase in tumor accumulation, as was demonstrated in a tumor-bearing mouse model using inductively coupled plasma mass spectrometry (ICP-MS) studies. Consequently, this study provides valuable insight into the future design of in situ albumin-binding complexes for photodynamic therapy in order to maximize their effectiveness and realize their full potential.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Photochemotherapy , Ruthenium , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Ruthenium/pharmacology , Ruthenium/chemistry , Ligands , Serum Albumin , Maleimides/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Antineoplastic Agents/chemistry
8.
Chembiochem ; 24(19): e202300467, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37526951

ABSTRACT

The search for new metal-based photosensitizers (PSs) for anticancer photodynamic therapy (PDT) is a fast-developing field of research. Knowing that polymetallic complexes bear a high potential as PDT PSs, in this study, we aimed at combining the known photophysical properties of a rhenium(I) tricarbonyl complex and a ruthenium(II) polypyridyl complex to prepare a ruthenium-rhenium binuclear complex that could act as a PS for anticancer PDT. Herein, we present the synthesis and characterization of such a system and discuss its stability in aqueous solution. In addition, one of our complexes prepared, which localized in mitochondria, was found to have some degree of selectivity towards two types of cancerous cells: human lung carcinoma A549 and human colon colorectal adenocarcinoma HT29, with interesting photo-index (PI) values of 135.1 and 256.4, respectively, compared to noncancerous retinal pigment epithelium RPE1 cells (22.4).


Subject(s)
Coordination Complexes , Photochemotherapy , Rhenium , Ruthenium , Humans , Photosensitizing Agents/pharmacology , Ruthenium/pharmacology , Coordination Complexes/pharmacology
9.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425761

ABSTRACT

Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens including fungal infections. Since these diseases target the most vulnerable communities who are disadvantaged by health and socio-economic factors, new agents should be, if possible, easy-to-prepare to allow for commercialization based on their low cost. In this study, we show that simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and NTDs targeted for elimination by 2030. Overall, the discovery of these new compounds with broad-spectrum activity opens new avenues for the development of treatments for several current human infections, either caused by fungi or by parasites, including other NTDs, as well as newly emerging diseases. ONE-SENTENCE SUMMARY: Simple derivatives of the well-known antifungal drug fluconazole were found to be highly effective in vivo against fungal infections, and also potent against the parasitic nematode Brugia, which causes lymphatic filariasis and against Trichuris, one of the soil-transmitted helminths that infects millions of people globally.

10.
Dalton Trans ; 52(27): 9482-9498, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37366535

ABSTRACT

Bioorganometallic complexes have attracted considerable interest and have shown promise for potential application in the treatment and diagnosis of cancer, as well as bioimaging agents, some acting as theranostic agents. The series of novel ferrocene, benzimidazo[1,2-a]quinoline and fluorescein derivatives with bidentate pyridyl-1,2,3-triazole and 2,2'-dipyridylamine and their tricarbonylrhenium(I) complexes was prepared and fully characterised by NMR, single-crystal X-ray diffraction, UV-Vis and fluorescence spectroscopy in biorelevant conditions. The fluorescein and benzimidazo[1,2-a]quinoline ligands and their complexes with Re(I) showed interactions with ds-DNA/RNA and HSA, characterised by thermal denaturation measurements, fluorimetric and circular dichroism titrations. The binding constants revealed that addition of Re(I) increases the affinity of fluorescein but decreases the affinity of benzimidazo[1,2-a]quinoline. The complexation of Re(I) had the opposite effect on fluorescein and benzimidazo[1,2-a]quinoline ligands' fluorimetric sensitivity upon biomacromolecule binding, Re(I) fluorescein complex emission being strongly quenched by DNA/RNA or HSA, while emission of Re(I) benzimidazo[1,2-a]quinolone complex was enhanced, particularly for HSA, making it a promising fluorescent probe. Some mono- and heterobimetallic complexes showed considerable antiproliferative activity on colon cancer cells (CT26 and HT29), with ferrocene dipyridylamine complexes exhibiting the best inhibitory activity, comparable to cisplatin. The correlation of the cytotoxicity data with the linker type between the ferrocene and the 1,2,3-triazole ring suggests that direct binding of the metallocene to the 1,2,3-triazole is favourable for antitumor activity. The Re(I) benzimidazo[1,2-a]quinolone complex showed moderate antiproliferative activity, in contrast to the Re(I) fluorescein complex, which exhibited weak activity on CT26 cells and no activity on HT29 cells. The accumulation of the Re(I) benzimidazo[1,2-a]quinolone complex in the lysosomes of CT26 cells indicates the site of its bioactivity, thus making this complex a potential theranostic agent.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Quinolones , Humans , Metallocenes , Ligands , Chelating Agents , DNA/chemistry , Quinolones/chemistry , Pyridines/pharmacology , Pyridines/chemistry , Triazoles/pharmacology , Triazoles/chemistry , RNA , Fluoresceins , Coordination Complexes/chemistry , Antineoplastic Agents/chemistry
11.
Angew Chem Int Ed Engl ; 62(20): e202218347, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36917074

ABSTRACT

Five osmium(II) polypyridyl complexes of the general formula [Os(4,7-diphenyl-1,10-phenanthroline)2 L]2+ were synthesized as photosensitizers for photodynamic therapy by varying the nature of the ligand L. Thanks to the pronounced π-extended structure of the ligands and the heavy atom effect provided by the osmium center, these complexes exhibit a high absorption in the near-infrared (NIR) region (up to 740 nm), unlike related ruthenium complexes. This led to a promising phototoxicity in vitro against cancer cells cultured as 2D cell layers but also in multicellular tumor spheroids upon irradiation at 740 nm. The complex [Os(4,7-diphenyl-1,10-phenanthroline)2 (2,2'-bipyridine)]2+ was found to be the most efficient against various cancer cell lines, with high phototoxicity indexes. Experiments on CT26 tumor-bearing BALB/c mice also indicate that the OsII complexes could significantly reduce tumor growth following 740 nm laser irradiation. The high phototoxicity in the biological window of this structurally simple complex makes it a promising photosensitizer for cancer treatment.


Subject(s)
Coordination Complexes , Neoplasms , Photochemotherapy , Ruthenium , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Osmium/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Coordination Complexes/chemistry , Neoplasms/drug therapy , Ruthenium/pharmacology , Ruthenium/chemistry
12.
Chembiochem ; 24(8): e202300093, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36942862

ABSTRACT

This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition was postponed twice for the reasons that we know. This has given us the opportunity to invite additional speakers of great standing. This year, Institut Curie hosted around 300 participants, including 220 on site and over 80 online. The pandemic has had, at least, the virtue of promoting online meetings, which we came to realize is not perfect but has its own merits. In particular, it enables those with restricted time and resources to take part in events and meetings, which can now accommodate unlimited participants. We apologize to all those who could not attend in person this time due to space limitation at Institut Curie.


Subject(s)
Biology , Humans , Paris
13.
Chem Sci ; 14(3): 409-442, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36741514

ABSTRACT

The development of organometallic catalysis has greatly expanded the synthetic chemist toolbox compared to only exploiting "classical" organic chemistry. Although more widely used in organic solvents, metal-based catalysts have also emerged as efficient tools for developing organic transformations in water, thus paving the way for further development of bio-compatible reactions. However, performing metal-catalysed reactions within living cells or organisms induces additional constraints to the design of reactions and catalysts. In particular, metal complexes must exhibit good efficiency in complex aqueous media at low concentrations, good cell specificity, good cellular uptake and low toxicity. In this review, we focus on the presentation of discrete metal complexes that catalyse or photocatalyse reactions within living cells or living organisms. We describe the different reaction designs that have proved to be successful under these conditions, which involve very few metals (Ir, Pd, Ru, Pt, Cu, Au, and Fe) and range from in cellulo deprotection/decaging/activation of fluorophores, drugs, proteins and DNA to in cellulo synthesis of active molecules, and protein and organelle labelling. We also present developments in bio-compatible photo-activatable catalysts, which represent a very recent emerging area of research and some prospects in the field.

14.
Org Lett ; 25(4): 624-629, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36688847

ABSTRACT

The first synthesis of various N-metallocenyl ynamides has been developed, and two strategies for the oxidative cyclization of N-ferrocenyl ynamide into ansa[3]-ferrocenylamide are also reported. The mechanism for the iodine(III)-triggered transformation has been studied by means of DFT calculations, showing that it proceeds through a concerted iodination deprotonation step.

15.
Inorg Chem ; 61(34): 13576-13585, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-35960605

ABSTRACT

Four new ruthenium(II) polypyridyl complexes were synthesized to study the effect of poly(ethylene glycol) and/or biotin conjugation on their physical and biological properties, including their hydrophilicity, their cellular uptake, and their phototoxicity. Unexpectedly, these complexes self-assembled into nanoparticles upon dilution in biological media. This behavior leads to their accumulation in lysosomes following their internalization by cells. While a significant increase in cellular uptake was observed for the biotin-conjugated complexes, it did not result in an increase in their phototoxicity. However, their high phototoxicity upon irradiation at long wavelengths (645-670 nm) and their self-assembling behavior make them a promising backbone for the development of new lysosome-targeted photosensitizers for photodynamic therapy.


Subject(s)
Coordination Complexes , Nanoparticles , Photochemotherapy , Ruthenium , Biotin , Photosensitizing Agents
16.
Chem Soc Rev ; 51(3): 1167-1195, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35048929

ABSTRACT

Photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are therapeutic techniques based on a photosensitizer (PS) and light. These techniques allow the spatial and temporal control of the activation of drugs with light. Transition metal complexes are attractive compounds as photoactivatable prodrugs since their excited states can be appropriately designed by subtle modifications of the ligands, the metal centre, or the oxidation state. However, most metal-based PSs contain heavy metals such as Ru, Os, Ir, Pt or Au, which are expensive and non-earth-abundant, contrary to first-row transition metals. In this context, the exploration of the photochemical properties of complexes based on first-row transition metals appears to be extremely promising. This did encourage several groups to develop promising PSs based on these metals. This review presents up-to-date state-of-the-art information on first-row-transition metal complexes, from titanium to zinc in regard to their application as PSs for phototherapeutic applications.


Subject(s)
Coordination Complexes , Metals, Heavy , Photochemotherapy , Transition Elements , Photosensitizing Agents/therapeutic use
17.
Chemistry ; 27(71): 17928-17940, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34714566

ABSTRACT

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has called for an urgent need for dedicated antiviral therapeutics. Metal complexes are commonly underrepresented in compound libraries that are used for screening in drug discovery campaigns, however, there is growing evidence for their role in medicinal chemistry. Based on previous results, we have selected more than 100 structurally diverse metal complexes for profiling as inhibitors of two relevant SARS-CoV-2 replication mechanisms, namely the interaction of the spike (S) protein with the ACE2 receptor and the papain-like protease PLpro . In addition to many well-established types of mononuclear experimental metallodrugs, the pool of compounds tested was extended to approved metal-based therapeutics such as silver sulfadiazine and thiomersal, as well as polyoxometalates (POMs). Among the mononuclear metal complexes, only a small number of active inhibitors of the S/ACE2 interaction was identified, with titanocene dichloride as the only strong inhibitor. However, among the gold and silver containing complexes many turned out to be very potent inhibitors of PLpro activity. Highly promising activity against both targets was noted for many POMs. Selected complexes were evaluated in antiviral SARS-CoV-2 assays confirming activity for gold complexes with N-heterocyclic carbene (NHC) or dithiocarbamato ligands, a silver NHC complex, titanocene dichloride as well as a POM compound. These studies might provide starting points for the design of metal-based SARS-CoV-2 antiviral agents.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2 , SARS-CoV-2/drug effects
18.
Dalton Trans ; 50(41): 14629-14639, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34581373

ABSTRACT

Capitalising on the previous identification of a distyryl coordinated Ru(II) polypyridine complex as a promising photosensitizer for photodynamic therapy, eight new complexes were synthesized by modifications of the ligands or by changing the metal coordinated. We report in this work the effects of these modifications on the physical, spectroscopic, and biological properties of the synthesized complexes. Subtle structural modifications of the distyryl ligand only had a moderate effect on the corresponding complexes' visible light absorption and singlet oxygen quantum yield. These modifications however had a significant effect on the lipophilicity, the cellular uptake and the phototoxicity of the complexes. Although the lipophilicity of the complexes had a somewhat expected effect on their cellular uptake, this last parameter could not be directly correlated to their phototoxicity, revealing other underlying phenomena. Overall, this work allowed identification of two promising ruthenium complexes as photosensitisers for photodynamic therapy and provides some guidance on how to design better photosensitizers.

19.
RSC Chem Biol ; 2(4): 1263-1273, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34458840

ABSTRACT

Fungal infections represent a global problem, notably for immunocompromised patients in hospital, COVID-19 patient wards and care home settings, and the ever-increasing emergence of multidrug resistant fungal strains is a sword of Damocles hanging over many healthcare systems. Azoles represent the mainstay of antifungal drugs, and their mode of action involves the binding mode of these molecules to the fungal lanosterol 14α-demethylase target enzyme. In this study, we have prepared and characterized four novel organometallic derivatives of the frontline antifungal drug fluconazole (1a-4a). Very importantly, enzyme inhibition and chemogenomic profiling demonstrated that lanosterol 14α-demethylase, as for fluconazole, was the main target of the most active compound of the series, (N-(ferrocenylmethyl)-2-(2,4-difluorophenyl)-2-hydroxy-N-methyl-3-(1H-1,2,4-triazol-1-yl)propan-1-aminium chloride, 2a). Transmission electron microscopy (TEM) studies suggested that 2a induced a loss in cell wall integrity as well as intracellular features ascribable to late apoptosis or necrosis. The impressive activity of 2a was further confirmed on clinical isolates, where antimycotic potency up to 400 times higher than fluconazole was observed. Also, 2a showed activity towards azole-resistant strains. This finding is very interesting since the primary target of 2a is the same as that of fluconazole, emphasizing the role played by the organometallic moiety. In vivo experiments in a mice model of Candida infections revealed that 2a reduced the fungal growth and dissemination but also ameliorated immunopathology, a finding suggesting that 2a is active in vivo with added activity on the host innate immune response.

20.
Chem Soc Rev ; 50(18): 10346-10402, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34313264

ABSTRACT

This review provides insight into the rapidly expanding field of metal-based antifungal agents. In recent decades, the antibacterial resistance crisis has caused reflection on many aspects of public health where weaknesses in our medicinal arsenal may potentially be present - including in the treatment of fungal infections, particularly in the immunocompromised and those with underlying health conditions where mortality rates can exceed 50%. Combination of organic moieties with known antifungal properties and metal ions can lead to increased bioavailability, uptake and efficacy. Development of such organometallic drugs may alleviate pressure on existing antifungal medications. Prodigious antimicrobial moieties such as azoles, Schiff bases, thiosemicarbazones and others reported herein lend themselves easily to the coordination of a host of metal ions, which can vastly improve the biocidal activity of the parent ligand, thereby extending the library of antifungal drugs available to medical professionals for treatment of an increasing incidence of fungal infections. Overall, this review shows the impressive but somewhat unexploited potential of metal-based compounds to treat fungal infections.


Subject(s)
Anti-Infective Agents , Mycoses , Pharmaceutical Preparations , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Fungi , Humans , Mycoses/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...