Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(23): 6507-6522, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36541038

ABSTRACT

Coccolithophores have global ecological and biogeochemical significance as the most important calcifying marine phytoplankton group. The structure and selection of prokaryotic communities associated with the most abundant coccolithophore and bloom-forming species, Emiliania huxleyi, are still poorly known. In this study, we assessed the diversity of bacterial communities associated with an E. huxleyi bloom in the Celtic Sea (Eastern North Atlantic), exposed axenic E. huxleyi cultures to prokaryotic communities derived from bloom and non-bloom conditions, and followed the dynamics of their microbiome composition over one year. Bloom-associated prokaryotic communities were dominated by SAR11, Marine group II Euryarchaeota and Rhodobacterales and contained substantial proportions of known indicators of phytoplankton bloom demises such as Flavobacteriaceae and Pseudoalteromonadaceae. The taxonomic richness of bacteria derived from natural communities associated with axenic E. huxleyi rapidly shifted and then stabilized over time. The succession of microorganisms recruited from the environment was consistently dependent on the composition of the initial bacterioplankton community. Phycosphere-associated communities derived from the E. huxleyi bloom were highly similar to one another, suggesting deterministic processes, whereas cultures from non-bloom conditions show an effect of stochasticity. Overall, this work sheds new light on the importance of the initial inoculum composition in microbiome recruitment and elucidates the temporal dynamics of its composition and long-term stability.


Subject(s)
Haptophyta , Microbiota , Haptophyta/genetics , Phytoplankton/genetics , Aquatic Organisms , Bacteria , Microbiota/genetics
2.
Sci Total Environ ; 857(Pt 3): 159619, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36280086

ABSTRACT

Along with their important diversity, coastal ecosystems receive various amounts of nutrients, principally arising from the continent and from the related human activities (mainly industrial and agricultural activities). During the 20th century, nutrients loads have increased following the increase of both the global population and need of services. Alongside, climate change including temperature increase or atmospheric circulation change has occurred. These processes, Ecosystem state changes are hard to monitor and predict. To study the long-term changes of nutrients concentrations in coastal ecosystems, eleven French coastal ecosystems were studied over 20 years as they encompass large climatic and land pressures, representative of temperate ecosystems, over a rather small geographical area. Both univariate (time series decomposition) and multivariate (relationships between ecosystems and drivers) statistical analyses were used to determine ecosystem trajectories as well as typologies of ecosystem trajectories. It appeared that most of the French coastal ecosystems exhibited trajectories towards a decrease in nutrients concentrations. Differences in trajectories mainly depended on continental and human influences, as well as on climatic regimes. One single ecosystem exhibited very different trajectories, the Arcachon Bay with an increase in nutrients concentrations. Ecosystem trajectories based on ordination techniques were proven to be useful tools to monitor ecosystem changes. This study highlighted the importance of local environments and the need to couple uni- and multi-ecosystem studies. Although the studied ecosystems were influenced by both local and large-scale climate, by anthropogenic activities loads, and that their trajectories were mostly similar based on their continental influence, non-negligible variations resulted from their internal functioning.


Subject(s)
Climate Change , Ecosystem , Humans , Human Activities , Nutrients
3.
Mol Ecol ; 31(14): 3761-3783, 2022 07.
Article in English | MEDLINE | ID: mdl-35593305

ABSTRACT

Major seasonal community reorganizations and associated biomass variations are landmarks of plankton ecology. However, the processes of plankton community turnover rates have not been fully elucidated so far. Here, we analyse patterns of planktonic protist community succession in temperate latitudes, based on quantitative taxonomic data from both microscopy counts (cells >10 µm) and ribosomal DNA metabarcoding (size fraction >3 µm, 18S rRNA gene) from plankton samples collected bimonthly over 8 years (2009-2016) at the SOMLIT-Astan station (Roscoff, Western English Channel). Based on morphology, diatoms were clearly the dominating group all year round and over the study period. Metabarcoding uncovered a wider diversity spectrum and revealed the prevalence of Dinophyceae and diatoms but also of Cryptophyta, Chlorophyta, Cercozoa, Syndiniales and Ciliophora in terms of read counts and or richness. The use of morphological and molecular analyses in combination allowed improving the taxonomic resolution and to identify the sequence of the dominant species and OTUs (18S V4 rDNA-derived taxa) that drive annual plankton successions. We detected that some of these dominant OTUs were benthic as a result of the intense tidal mixing typical of the French coasts in the English Channel. Our analysis of the temporal structure of community changes point to a strong seasonality and resilience. The temporal structure of environmental variables (especially Photosynthetic Active Radiation, temperature and macronutrients) and temporal structures generated by species life cycles and or species interactions, are key drivers of the observed cyclic annual plankton turnover.


Subject(s)
Biodiversity , Diatoms , Diatoms/genetics , Eukaryota/genetics , Phylogeny , Plankton/genetics , RNA, Ribosomal, 18S/genetics , Seasons
4.
J Phycol ; 57(3): 831-848, 2021 06.
Article in English | MEDLINE | ID: mdl-33316844

ABSTRACT

Free-living red coralline algae play an important role in the carbon and carbonate cycles of coastal environments. In this study, we examined the physiology of free-living coralline algae-forming maerl beds in the Bay of Brest (Brittany, France), where Lithothamnion corallioides is the dominant maerl (i.e., rhodolith) species. Phymatolithon calcareum and Lithophyllum incrustans are also present (in lower abundances) at a specific site in the bay. We aimed to assess how maerl physiology is affected by seasonality and/or local environmental variations at the inter- and intraspecific levels. Physiological measurements (respiration, photosynthetic, and calcification rates) were performed using incubation chambers in winter and summer to compare (1) the dominant maerl species at three sites and (2) three coexisting maerl species at one site. Comparison of the three coexisting maerl species suggests that L. corallioides is the best adapted to the current environmental conditions in the Bay of Brest, because this species is the most robust to dissolution in the dark in winter and has the highest calcification efficiency in the light. Comparisons of L. corallioides metabolic rates between stations showed that morphological variations within this species are the main factor affecting its photosynthetic and calcification rates. Environmental factors such as freshwater inputs also affect its calcification rates in the dark. In addition to interspecies variation in maerl physiology, there were intraspecific variations associated with direct (water physico-chemistry) or indirect (morphology) local environmental conditions. This study demonstrates the plasticity of maerl physiology in response to environmental changes, which is fundamental for maerl persistence.


Subject(s)
Rhodophyta , Carbonates , France , Photosynthesis , Seasons
5.
J Phycol ; 56(3): 719-729, 2020 06.
Article in English | MEDLINE | ID: mdl-31965565

ABSTRACT

In 1995 a strain of Ectocarpus was isolated from Hopkins River Falls, Victoria, Australia, constituting one of few available freshwater or nearly freshwater brown algae, and the only one belonging to the genus Ectocarpus. It has since been used as a model to study acclimation and adaptation to low salinities and the role of its microbiota in these processes. To provide more background information on this model, we assessed if Ectocarpus was still present in the Hopkins river 22 years after the original finding, estimated its present distribution, described its abiotic environment, and determined its in situ microbial composition. We sampled for Ectocarpus at 15 sites along the Hopkins River as well as 10 neighboring sites and found individuals with ITS and cox1 sequences identical to the original isolate at three sites upstream of Hopkins River Falls. The salinity of the water at these sites ranged from 3.1 to 6.9, and it was rich in sulfate (1-5 mM). The diversity of bacteria associated with the algae in situ (1312 operational taxonomic units) was one order of magnitude higher than in previous studies of the original laboratory culture, and 95 alga-associated bacterial strains were isolated from algal filaments on site. In particular, species of Planctomycetes were abundant in situ but rare in laboratory cultures. Our results confirmed that Ectocarpus was still present in the Hopkins River, and the newly isolated algal and bacterial strains offer new possibilities to study the adaptation of Ectocarpus to low salinity and its interactions with its microbiome.


Subject(s)
Microbiota , Phaeophyceae , Rivers , Salinity , Victoria
6.
Ecol Evol ; 9(24): 13787-13807, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31938482

ABSTRACT

Made up of calcareous coralline algae, maerl beds play a major role as ecosystem engineers in coastal areas throughout the world. They undergo strong anthropogenic pressures, which may threaten their survival. The aim of this study was to gain insight into the future of maerl beds in the context of global and local changes. We examined the effects of rising temperatures (+3°C) and ocean acidification (-0.3 pH units) according to temperature and pH projections (i.e., the RCP 8.5 scenario), and nutrient (N and P) availability on three temperate maerl species (Lithothamnion corallioides, Phymatolithon calcareum, and Lithophyllum incrustans) in the laboratory in winter and summer conditions. Physiological rates of primary production, respiration, and calcification were measured on all three species in each treatment and season. The physiological response of maerl to global climate change was species-specific and influenced by seawater nutrient concentrations. Future temperature-pH scenario enhanced maximal gross primary production rates in P. calcareum in winter and in L. corallioides in both seasons. Nevertheless, both species suffered an impairment of light harvesting and photoprotective mechanisms in winter. Calcification rates at ambient light intensity were negatively affected by the future temperature-pH scenario in winter, with net dissolution observed in the dark in L. corallioides and P. calcareum under low nutrient concentrations. Nutrient enrichment avoided dissolution under future scenarios in winter and had a positive effect on L. incrustans calcification rate in the dark in summer. In winter conditions, maximal calcification rates were enhanced by the future temperature-pH scenario on the three species, but P. calcareum suffered inhibition at high irradiances. In summer conditions, the maximal calcification rate dropped in L. corallioides under the future global climate change scenario, with a potential negative impact on CaCO3 budget for maerl beds in the Bay of Brest where this species is dominant. Our results highlight how local changes in nutrient availability or irradiance levels impact the response of maerl species to global climate change and thus point out how it is important to consider other abiotic parameters in order to develop management policies capable to increase the resilience of maerl beds under the future global climate change scenario.

7.
Gigascience ; 4: 27, 2015.
Article in English | MEDLINE | ID: mdl-26097697

ABSTRACT

Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.


Subject(s)
Marine Biology , Biodiversity , Database Management Systems , Metagenomics , Oceans and Seas
8.
Environ Microbiol ; 10(9): 2433-43, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18537812

ABSTRACT

Very few studies have analysed the niches of pelagic protist in details. This is because for most protists, both an accurate species definition and methods for routine detection and quantification of cells are lacking. The morphospecies Micromonas pusilla, a marine unicellular green alga, is the most ubiquitous and cosmopolitan picoeukaryote described to date. This species comprises several independent genetic lineages or clades, which are not currently distinguishable based on comparison of their morphology or biogeographical distribution. Molecular probes were used to detect and quantify the genetic clades of M. pusilla in samples from temperate, polar and tropical environments in order to assess potential ecological niche partitioning. The three clades were detected in all biogeographical regions studied and were commonly found in sympatry. Cell abundances recorded for clades A and B were high, especially at coastal stations. Clade C, when detected, was always at low abundances and is suggested to be a low-light clade. Shifts in the contribution of clades to total M. pusilla abundance were observed along environmental gradients, both at local and basin-wide scales. This suggests that the phylogenetic clades occupy specific niches and confirms the existence of cryptic species within the morphospecies M. pusilla. Parameters which can precisely explain the distribution of these cryptic species remain to be elucidated.


Subject(s)
Biodiversity , Chlorophyta/genetics , DNA Probes , DNA, Algal/genetics , Phylogeny , Biomass , DNA, Ribosomal/genetics , Ecology , Evolution, Molecular , Genetic Variation , Geography , In Situ Hybridization, Fluorescence , Oceans and Seas , RNA, Ribosomal, 18S/genetics , Seasons , Sensitivity and Specificity , Species Specificity , Temperature
9.
Appl Environ Microbiol ; 70(7): 4064-72, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15240284

ABSTRACT

The class Prasinophyceae (Chlorophyta) contains several photosynthetic picoeukaryotic species described from cultured isolates. The ecology of these organisms and their contributions to the picoeukaryotic community in aquatic ecosystems have received little consideration. We have designed and tested eight new 18S ribosomal DNA oligonucleotide probes specific for different Prasinophyceae clades, genera, and species. Using fluorescent in situ hybridization associated with tyramide signal amplification, these probes, along with more general probes, have been applied to samples from a marine coastal site off Roscoff (France) collected every 2 weeks between July 2000 and September 2001. The abundance of eukaryotic picoplankton remained high (>10(3) cells ml(-1)) during the sampling period, with maxima in summer (up to 2 x 10(4) cells ml(-1)), and a single green algal species, Micromonas pusilla (Prasinophyceae), dominated the community all year round. Members of the order Prasinococcales and the species Bathycoccus prasinos (Mamiellales) displayed sporadic occurrences, while the abundances of all other Prasinophyceae groups targeted remained negligible.


Subject(s)
Plankton/classification , Chlorophyll/analysis , Chlorophyll A , Photosynthesis , Phylogeny , Plankton/genetics , Plankton/metabolism , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL